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Abstract 20 

Despite the plethora of methods available for uncertainty quantification, their use has been limited 21 

in the practice of water quality (WQ) modeling. In this paper, a decision support tool (DST) that 22 

yields a continuous time series of WQ loads from sparse data using streamflows as predictor  23 

variables is presented. The DST estimates uncertainty due to residual errors using a relevance 24 

vector machine. To highlight the importance of uncertainty quantification, two applications 25 

enabled within the DST are discussed. The DST computes (i) probability distributions of four 26 

measures of WQ risk analysis- reliability, resilience, vulnerability, and watershed health- as 27 

opposed to single deterministic values and (ii) concentration/load reduction required in a WQ 28 

constituent to meet total maximum daily load (TMDL) targets along with the associated risk of 29 

failure. Accounting for uncertainty reveals that a deterministic analysis may mislead about the WQ 30 

risk and the level of compliance attained with established TMDLs.  31 
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1. Introduction 38 

Environmental decisions are often based upon mathematical models of the system under 39 

consideration (Beven, 2007; Refsgaard et al., 2006). For example, in total maximum daily load 40 

(TMDL, developed by United States Environmental Protection Agency, USEPA) development, 41 

models such as SWAT (Soil and water assessment tool, Arnold and Allen, 1999) or HSPF 42 

(Hydrological Simulation Program Fortran; Jia and Culver, 2006) are frequently used for 43 

simulation of water quality (WQ) constituents (e.g., Indiana Department of Environmental 44 

Management, IDEM, 2017). Typically, the parameters of a model are calibrated against available 45 

observations, and many observations are required to calibrate a complex model like SWAT. In 46 

some applications, continuous time series of streamflow observations and WQ constituent 47 

concentrations are required to assess the health of an impaired water body. Examples include (a) 48 

identification of sources of pollution in a waterbody (Mallya et al., 2018) and (b) computation of 49 

load reduction required (LRR) to restore a waterbody to healthy conditions (Park et al., 2015). 50 

Whereas streamflows are measured frequently in a watershed, WQ constituent such as suspended-51 

solids, nitrogen, and phosphorus concentrations are measured sparsely (e.g., biweekly and only in 52 

summer months). Sparse WQ data are not amenable to direct use in reliable decision making 53 

(Kjeldsen and Rosbjerg, 2004). Therefore, various models have been developed for temporal 54 

reconstruction of WQ data (e.g., load estimator (LOADEST) Runkel et al., 2004). In this study, 55 

reconstruction refers to the estimation of WQ constituent concentration/load values at time-steps 56 

where WQ data is unavailable using the observed WQ constituent data. 57 

Any mathematical representation of an open system, such as the ones encountered in 58 

environmental modeling, incur uncertainties due to lack of complete knowledge about the system, 59 

inadequate representation of dominant processes through mathematical equations, erroneous data 60 

used for parameter estimation, and difficult-to-represent local characteristics of the system (Beven, 61 

2007). These uncertainties in the modeling process should be considered to make informed 62 

management decisions (Beven, 2007). The quantification of uncertainties in hydrologic and WQ 63 

modeling is carried out using probabilistic methods (see Ahamadisharaf et al., 2019 for a review). 64 

In a typical probabilistic analysis, the residual time series (the difference between observed and 65 

simulated response of the system) is assumed to follow a probability distribution. The parameters 66 

of the probability distribution are estimated against observed residuals time series, and, 67 

subsequently, the calibrated probability distribution is used for uncertainty quantification. The 68 
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residual time series is an aggregate of measurement errors, structural errors, and errors in the 69 

numerical implementation of the model. Measurement errors refer to errors in the measurement of 70 

streamflow and WQ data. Structural errors exist because a model is an approximation of reality. 71 

Calibrated model parameters also incur uncertainty which is referred to as parametric uncertainty. 72 

Parametric uncertainty exists due to measurement errors, structural errors, and limited information 73 

in the data to calibrate the parameters. A modeler should ensure that errors in the numerical 74 

implementation are negligible. Thus, the residual time series is an aggregate of measurement and 75 

structural errors. Despite growing awareness about the importance of uncertainty due to structural 76 

errors (Brynjsdottir and O’Hagan, 2014), measurement errors (Baldassarre and Montanari, 2009), 77 

unknown parameters (Melching and Bauwens, 2001) and residual errors (Beven and Binely, 1992; 78 

Borsuk and Stow, 2000; Borsuk et al., 2002; Chaudhary and Hantush, 2017; Hoque et al., 2012; 79 

Hantush and Chaudhary, 2014), uncertainty is rarely quantified in practice of WQ modeling. For 80 

example, in TMDL applications, the current practice is to use a margin of safety (MOS) to account 81 

for uncertainty in the relationship between the pollutant load and the quality of the receiving water 82 

body (Novotny, 2002). The MOS is typically assigned by making conservative assumptions or 83 

specified explicitly as a percentage (e.g., 5-10%) of the TMDL (NRC, 2001). Recently, Nunoo et 84 

al. (2020) found that, in 84% of the 37,841 TMDLs reported, uncertainty analysis was not carried 85 

out to select a margin of safety (MOS). Subjective or arbitrary specification of MOS might lead to 86 

overly conservative estimates and increased cost of implementation of pollution control measures 87 

(Zhang and Yu, 2004). 88 

In WQ modeling, the pervasiveness of uncertainty has been long recognized (Beck, 1987) followed 89 

by several efforts to quantify it (e.g., Ahamadisharaf and Benham, 2020; Borsuk, 2003; Chaudhary 90 

and Hantush, 2017; Hoque et al., 2012; Jia and Culver, 2008; Reckhow, 2003; Shirmohammadi et 91 

al., 2006; Zhang and Yu, 2004; Zheng et al., 2011; Zheng and Han, 2016; and Zheng and Keller, 92 

2008). Uncertainty quantification for complex models tend to be complicated, time-consuming, 93 

and computationally demanding (see Smith et al., 2014, chap. 2 for some examples). Thus, 94 

researchers have sought simpler statistical models for simulation of WQ time series (e.g., 95 

LOADEST).  96 

For both physical and statistical models, a rich theory has been developed to quantify uncertainty 97 

by residual analysis (e.g., Smith et al., 2015). However, uncertainty quantification is frequently 98 
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avoided in practice for the following reasons (Pappenberger and Beven, 2006): (1) it is subjective, 99 

too difficult to perform and cannot be incorporated into decision making; (2) it is not required if 100 

one uses physically realistic models; and (3) it is too difficult for policy-makers to understand and 101 

does not really matter in making the final decision. Pappenberger and Beven (2006) further argued 102 

that the reasons cited above are untenable, and they emphasized the importance of an open 103 

discourse of uncertainty in environmental models. Reckhow (2003) pointed out that modelers 104 

should clearly communicate the uncertainties associated with their models to decision-makers.  A 105 

solution to the problem ‘uncertainty analysis is too difficult to perform’ is availability of easy-to-106 

use software packages that can be used by practitioners with little effort (e.g., Gronewold and 107 

Borsuk, 2009). In this paper, we present one such software through a decision support tool (DST).  108 

The DST reconstructs WQ constituent time series by using streamflow values as predictor 109 

variables and employing the state-of-the-art relevance vector machine (RVM; Tipping, 2001) that 110 

can accommodate nonlinear transformations between streamflow and WQ data. Moreover, the 111 

RVM provides uncertainty estimates that are conditioned on streamflows and can account for 112 

errors in streamflows (not explored here).  The DST uses the reconstructed WQ time series along 113 

with the uncertainty estimates for the following two applications: 114 

(1) WQ risk assessment by computing indices such as reliability, resilience, vulnerability, and 115 

composite watershed health index (Hoque et al., 2012, Mallya et al., 2018).  116 

(2) Computation of LRR of a WQ constituent so that the TMDL criterion is met with an 117 

acceptable risk of noncompliance (Camacho et al., 2018).  118 

Specifically, the DST provides a probabilistic estimate of watershed health and the required 119 

reduction in pollutant concentration/load as a function of the risk of violating TMDL criteria. Fig. 120 

1 shows the overview of the three tasks carried out by the DST. In this study, using the St. Joseph 121 

River Watershed (spread over parts of Indiana, Michigan, and Ohio) as a test case, the two 122 

applications illustrate the importance of uncertainty in assessing watershed health and in 123 

conducting TMDL studies. While other investigators (e.g., Borsuk et al., 2002; Hantush and 124 

Chaudhary, 2014; and Camacho et al., 2018) have demonstrated the benefits of probabilist ic 125 

uncertainty estimation in TMDLs, no study has implemented such a framework at the watershed 126 

scale, to the best of our knowledge. 127 

 128 
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Fig. 1. A flowchart of the steps implemented in the Decision Support Tool 129 

 130 

2. Theory 131 

2.1 Reconstruction of water quality time series 132 

Traditionally, simple regression equations LOADEST (Load Estimator, Runkel et al., 2004) have 133 

been used for reconstruction of WQ time series using available streamflows as predictors. 134 

However, the uncertainty associated with these estimates is rarely reported (or used). The DST 135 

uses RVM (Bishop, 2006 and Tipping, 2001) to estimate the uncertainty associated with the 136 

reconstruction. A general statistical model is used in the DST: 137 

 

𝑦𝑗 = ∑ 𝑤𝑖𝜙𝑖(𝑥𝑗)

𝑁

𝑖=1

+ 𝜖𝑗, 𝑗 = 1,2, … , 𝑛 
(1) 

where 𝑦𝑗 is log of load of WQ constituent at 𝑗𝑡ℎ time-step , 𝜙𝑖  is the 𝑖𝑡ℎ (linear or non-linear) basis 138 

function, 𝑥𝑗 is streamflow at 𝑗𝑡ℎ time-step, 𝑁 is the number of the basis functions, 𝑤𝑖 is the weight 139 

of the 𝑖𝑡ℎ basis function, 𝜖𝑗 is the error in the estimation of 𝑦𝑗 using ∑ 𝑤𝑖𝜙𝑖(𝑥𝑗)𝑖  as a model, and 140 

𝑛 is the number of time-steps at which observed streamflows are available. The basis functions 141 
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may be chosen to achieve a nonlinear transformations of streamflows into WQ constituents  142 

(Tripathi and Govindaraju, 2007). The current version of the DST uses the same transformations 143 

as the basis functions as are used in LOADEST  due to the historical use of LOADEST in WQ 144 

literature and to enable a comparison with LOADEST. For example, in case of the LOADEST 145 

second equation (as listed in Table 1), the following three basis functions would be required: 1, 𝑙𝑛 𝑥 146 

and 𝑙𝑛 𝑥2.  147 

The 𝜖𝑗 in Eq. (1) is assumed to be a zero-mean, Gaussian random variable with a homoscedastic 148 

variance 𝜎𝜖
2. Additionally, in RVM, each weight 𝑤𝑖 is assigned a zero-mean Gaussian prior with 149 

variance αi
−1. This specification of prior allows automatic determination of only the relevant basis 150 

functions in Eq. (1) leading to predictions that are potentially robust to errors in predictor variables . 151 

Subsequently, the posterior distribution of weight vectors 𝒘 (conditioned on the vector 𝒚, matrix 152 

𝛷 = [𝝓(𝑥1), 𝝓(𝑥2), … , 𝝓(𝑥𝑛)] of predictors, parameters 𝛼𝑖′𝑠, and the variance 𝜎𝜖
2) is computed 153 

using the Bayes theorem. The posterior distribution of 𝒘 is found to be Gaussian with mean 𝝁𝒘 154 

and covariance-matrix Σ𝒘 such that   155 

 Σ𝑤 = (𝜎−2𝛷𝛷𝑇 + A)−1, 

𝝁𝒘 = 𝜎−2𝛴𝑤𝛷𝒚, and 

𝐴 = 𝑑𝑖𝑎𝑔(𝛼1, 𝛼2, … , 𝛼𝑁).  

(2) 

The predictive distribution at time-step t, given streamflow 𝑥𝑡 is then Gaussian with mean  156 

 𝜇𝑦𝑡
= 𝝁𝒘

𝑻 𝝓(𝑥𝑡), (3) 

and covariance between predicted log of load at 𝑡1 and 𝑡2 157 

 Σ𝑡1,𝑡2
 = 𝜎𝜖

2𝛿(𝑡1 − 𝑡2) + 𝝓(𝑥𝑡1
)

𝑇
Σ𝑤𝝓(𝑥𝑡2

), (4) 

where 𝛿(𝑡1 − 𝑡2) is the Dirac-delta function. Equation (4) shows that the uncertainty in 158 

reconstruction at time-step t is dependent upon predictor 𝑥𝑡 and covariance matrix Σ𝒘 of weight 159 

vector 𝒘.  For convenience in applications, the posterior distribution over the parameters 𝛼𝑖 ′𝑠 and 160 

𝜎𝜖
2 is approximated by the Dirac-delta function 𝛿(𝜶𝑴𝑨𝑷 , 𝜎𝜖,𝑀𝐴𝑃

2 ), where 𝜶𝑴𝑨𝑷 and 𝜎𝜖,𝑀𝐴𝑃
2  are the 161 

maximum posterior estimates of these parameters.   162 

The DST requires daily streamflow time series and measurements of the WQ constituent as inputs 163 

by the user. If the streamflow gauge and WQ monitoring stations are not co-located, it uses the 164 

watershed area-ratio method (section 2.4) for the estimation of streamflow at the WQ monitoring 165 
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station. It allows the users to select any one of the nine LOADEST equations (Table 1), or to pick 166 

the best LOADEST equation based on Akaike Information criterion (AIC; Akaike, 1973) if 167 

desired. To represent the uncertainty in reconstructed WQ time series, it draws 10000  Monte Carlo 168 

(MC) samples from the logarithm of load estimated as a multivariate Gaussian distribution (Fang 169 

and Zhang, 1990). The mean and covariance matrix of the Gaussian distribution are given by Eqs. 170 

(3) and (4), respectively. The 10000  MC simulations were found sufficient to obtain stable 171 

estimates of lower and upper bounds of 90% and 95% prediction intervals/credible regions, WQ 172 

risk measures (section 2.2), and TMDL compliance plots (section 2.3). Subsequently, the DST 173 

computes 90% and 95% credible regions as follows. The 90% credible region is the region 174 

bounded by 5𝑡ℎ and 95𝑡ℎ  percentiles of MC samples; the percentiles are computed at each time-175 

step. The 95% credible region is the region bounded by 2.5𝑡ℎ  and 97.5𝑡ℎ  percentiles of MC 176 

samples. 177 

Even though DST uses the same basis-functions in RVM as those in LOADEST, a significant 178 

difference between the RVM (as employed in the DST) and LOADEST (as employed by Park et 179 

al., 2015) exists in the parameter estimation method. LOADEST uses adjusted-maximum-180 

likelihood estimation (AMLE) to estimate the weight vector 𝒘. In RVM, the choice of the prior 181 

𝑁(0, 𝛼𝑖
−1) on 𝑖𝑡ℎ weight 𝑤𝑖 expresses a preference for smaller weights (Tripathi, 2009, pp. 13).:  182 

The smaller weights dampen observation errors in predictors as in LASSO and ridge regression 183 

(Friedman et al., 2001). In some cases, the parameter 𝛼𝑖
−1 may converge to zero thus eliminat ing 184 

the 𝑖𝑡ℎ basis function from the set of predictor variables; the reduced set of predictor variables 185 

results in a computationally efficient model (Bishop, 2006 and Tipping, 2001).  186 

Table 1. LOADEST equations 187 

 LOADEST equations 

1. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄 
2. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2𝑙𝑛𝑄2 

3. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2𝛿𝑡 

4. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2 𝑠𝑖𝑛(2𝜋𝛿𝑡) + 𝑤3 𝑐𝑜𝑠(2𝜋𝛿𝑡) 
5. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2𝑙𝑛𝑄2 + 𝑤3𝛿𝑡 

6. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2𝑙𝑛𝑄2 + 𝑤3 𝑠𝑖𝑛(2𝜋𝛿𝑡) + 𝑤4 𝑐𝑜𝑠(2𝜋𝛿𝑡) 

7. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2 𝑠𝑖𝑛(2𝜋𝛿𝑡) + 𝑤3 𝑐𝑜𝑠(2𝜋𝛿𝑡) + 𝑤4𝛿𝑡 
8. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2𝑙𝑛𝑄2 + 𝑤3 𝑠𝑖𝑛(2𝜋𝛿𝑡) + 𝑤4 𝑐𝑜𝑠(2𝜋𝛿𝑡) + 𝑤5𝛿𝑡 
9. 𝑙𝑛 𝐿 =𝑤0 + 𝑤1𝑙𝑛𝑄+ 𝑤2𝑙𝑛𝑄2 + 𝑤3 𝑠𝑖𝑛(2𝜋𝛿𝑡) + 𝑤4 𝑐𝑜𝑠(2𝜋𝛿𝑡) + 𝑤5𝛿𝑡 + 𝑤6𝛿𝑡2 

δt = time in decimal units since first Julian of a year; for example, 31 Jan, 2005 is represented as 2005.085  

𝐿 = load (Kg day-1) 

Q =streamflow in m3s−1 or ft3s−1  
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2.2 Water quality risk analysis  188 

The health of a watershed is quantified by using the following three measures (Hoque et al., 2012): 189 

reliability (R), resilience (R), and vulnerability (V). Additionally, a composite watershed health 190 

measure can be computed as a function of R-R-V (Mallya et al., 2018). Suppose, 𝑌𝑡 is the 191 

concentration or load of the reconstructed WQ constituent at time-step 𝑡 with standard numerical 192 

target denoted by 𝑌𝑡
∗ (concentration or load). The reliability (𝜌) is defined as the probability of the 193 

waterbody being in the compliant state, that is, 194 

 𝜌 = 𝑃{𝑌𝑡 ∈ 𝑆} = 1 − 𝑃{𝑌𝑡 ∈ 𝐹}, (5) 

where 𝑃{} denotes the probability of the event {}, 𝑆 denotes the event {𝑌𝑡 ≤ 𝑌𝑡
∗} denoting the 195 

safe/compliant state, and 𝐹 denotes the event {𝑌𝑡 > 𝑌𝑡
∗} denoting failed/noncompliant state. The 196 

definitions of the compliant and non-compliant state will be reversed in case of dissolved oxygen, 197 

that is, 𝑆 = {𝑌𝑡 ≥ 𝑌𝑡
∗} and 𝐹 = {𝑌𝑡 < 𝑌𝑡

∗}. Given the time series of WQ constituent, the DST 198 

estimates 𝜌 as  199 

 
𝜌 = 1 −

1

𝑛
∑ 𝑧𝑡

𝑛

𝑡=1

, 
(6) 

where 𝑧𝑡 = 1, when 𝑌𝑡 ∈ 𝐹  and 𝑧𝑡 = 0, when 𝑌𝑡 ∈ 𝑆  and 𝑛 is the total number of time-steps. 200 

Resilience (𝑟) is defined as the probability of the system to recover from a non-compliant state, 201 

that is, 202 

  𝑟 = 𝑃{𝑌𝑡+1 ∈ 𝑆|𝑌𝑡 ∈ 𝐹 }, (7) 

and can be estimated as 203 

 𝑟 =
∑ 𝑢𝑡

𝑛
𝑡=1

∑ 𝑧𝑡
𝑛
𝑡=1

, 
(8) 

where 𝑢𝑡 = 1 when 𝑌𝑡+1 ∈ 𝑆   and 𝑌𝑡 ∈ 𝐹  and 0 otherwise, and 𝑧𝑡 as defined above. In summary, 204 

a waterbody (or watershed) is resilient if it returns from a non-compliant state to a compliant state; 205 

the longer the waterbody takes to reach a compliant state from a non-compliant state, the less 206 

resilient the waterbody. 207 

Vulnerability is defined as the magnitude of severity of violation during a noncompliant event.  208 

For WQ violations in a waterbody, there is no universal measure to quantify the severity of a 209 
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violation. Mallya et al. (2018) proposed a new measure referred to as robustness – opposite of 210 

vulnerability – that scales between 0 and 1- as 211 

 

𝑣𝑜 = {Π𝑡=1
𝑛 (

𝑌𝑡
∗

𝑌𝑡

)
𝐻[𝑌𝑡−𝑌∗]

}

1
𝑚

, 

(9) 

where m is number of time-steps at which 𝑌𝑡 > 𝑌𝑡
∗, 𝐻[•] is the Heaviside function so that (9) 212 

accounts only for the noncompliant events. When the deviations of 𝑌𝑡 from 𝑌∗ are large then 𝑣𝑜 →213 

0; when deviations are small then 𝑣𝑜 → 1, which is consistent with definitions for reliability (𝜌) 214 

and resilience (𝑟). Vulnerability (𝑣) can now be defined as:  215 

 𝑣 = 1 − 𝑣𝑜   (10) 

A composite measure of watershed health (ℎ) is defined as (Mallya et al., 2018): 216 

 ℎ = (𝜌 𝑟 𝑣𝑜)
1

3  
(11) 

Clearly, if 𝜌 = 𝑟 =  𝑣0 = 1 then ℎ = 1, i.e., the drainage area is healthy with respect to the WQ 217 

constituent of interest. Similarly, if any one of the risk-measures is 0 then ℎ = 0, i.e., the drainage 218 

area is impaired  with respect to WQ constituent of interest.  219 

Reliability, resilience and vulnerability can be used to design appropriate measures to improve the 220 

WQ of a waterbody. For instance, reliability should be used as a guiding measure if frequent 221 

violations of a WQ constituent are not allowed. In cases where durations of violations are more 222 

consequential than the frequency of violations, resilience is a useful measure. Similar ly, 223 

vulnerability is a useful measure when the goal is to reduce the severity of violations. Moreover, 224 

spatial distribution of these WQ risk-measures over different streams can be used to identify the 225 

critical sources of pollution in a watershed (e.g., Mallya et al., 2018). The usefulness of different 226 

WQ risk measures also depend upon the timescale of analysis. For example, in some states, E. Coli 227 

concentration should be below 235 cfu/100ml at least 89.5% of the time-steps at daily timescale   228 

and should be below 126 cfu/100ml at 100% of time-steps at monthly timescale (Ahmadisharaf 229 

and Benham, 2020). Thus, in case of E. Coli, watershed managers need to ensure that waterbody 230 

has 0.895 and 1.00 reliability at daily and monthly timescales, respectively. Current version of the 231 

DST computes WQ risk measures at the daily timescale. A future version will include WQ-risk 232 

analysis at other timescales. 233 
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Uncertainty associated with reconstructed WQ data will carry over to the risk measures also. The 234 

DST uses MC method to estimate probability distributions of the R-R-V and the WH measures. It 235 

computes R-R-V and WH for each realization of reconstructed WQ time-series, and, subsequently, 236 

constructs the histograms of these measures from the ensemble values, and tabulates the mean and 237 

standard-deviation of the measures. The DST has a Google map interface which shows the 238 

locations of USGS WQ stations and National Water Quality Assessment (NAWQA) stations; a 239 

user can click on any one these WQ stations and fill out a form to reconstruct WQ data and compute 240 

WQ risk measures. 241 

2.3 Risk-based total maximum daily load (TMDL) analysis 242 

In this section, we present the theory behind the determination of the LRR to meet TMDL targets. 243 

Currently, the MOS is used to account for uncertainties associated with TMDL development. For 244 

example, suppose that the concentration of total phosphorus (TP) corresponding to a TMDL is 245 

0.08 mg L−1 and a deterministic model predicts that to maintain this concentration  in a waterbody, 246 

the maximum allowable load in the watershed is 600 Kg day −1. Then an arbitrarily selected 10%  247 

of the allowable load can be reserved for MOS. The 10% MOS serves to acknowledge that the 248 

magnitude of uncertainties in the model simulated TP are such that 540 Kg day −1 in watershed 249 

may also correspond to maximum TP concentration of 0.08 mg L−1. However, the protective 250 

cushion provided by the 10% of the allowable load remains at best unknown.  A small MOS may 251 

result in non-attainment of the water quality standard, but a large MOS can be inefficient and costly 252 

(Novotny, 2003). Therefore, a realistic estimate of uncertainty is required. The DST accommodates 253 

the uncertainty through MC simulations that yield an ensemble of 𝑀 realizations of the WQ time 254 

series. 255 

Borsuk et al. (2002) presented a framework for a probabilistic TMDL development. Let 𝐶∗ be the 256 

user-defined target TMDL concentration of a waterbody, and suppose that the waterbody violates 257 

the TMDL standard at most 𝑝 fraction of the times during the period of analysis. Then, one can 258 

define the probability of compliance (𝜅𝑝) to permissible violations 𝑝 as: 259 

 𝜅𝑝 = 𝑃{𝐶𝑝 ≤ 𝐶∗} = 𝐹𝐶𝑝
(𝐶∗), (12) 

where 𝐶𝑝 denotes the concentration value that is exceeded 𝑝 fraction of the times in a realization 260 

of WQ time series; 𝑝 is the permissible fraction of violations (0.05, 0.10, …etc.). The quantity 𝐶𝑝 261 
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is a random variable that represents uncertainty associated with reconstructed WQ time series. The 262 

quantity 𝜅𝑝 is the fraction of WQ constituent time series generated by MC method that are 263 

compliant. The definition of 𝜅𝑝 would be reversed in case of dissolved oxygen, i.e. 𝜅𝑝 =264 

𝑃{𝐶𝑝 ≥ 𝐶∗}. The distribution of 𝐶𝑝 is determined by MC method as follows.  265 

For a reconstructed WQ constituent  time series, a value of 𝑐𝑝 is determined using 266 

 𝑐𝑝 = 𝐺−1(1 − 𝑝),  (13) 

where 𝑐𝑝 is the 100(1 − 𝑝)𝑡ℎ percentile of a reconstructed WQ time series,  𝐺 is the empirical 267 

cumulative distribution function (CDF) of reconstructed WQ constituent time series, and 𝑝 is the 268 

fraction of permissible violations (0.05, 0, 0.1, 0.15, 0.20 etc.). The quantity 𝑐𝑝 may be interpreted 269 

as threshold value to be compared against the target TMDL concentration that would ensure 270 

compliance of a WQ time series realization. If 𝑐𝑝 is below or equal to 𝐶∗ then the WQ time series 271 

is already compliant; if the 𝑐𝑝 is above  𝐶∗ then a concentration reduction of 𝑐𝑝 − 𝐶∗ is required 272 

for the WQ time series to be compliant. (Required concentration reduction is 𝐶∗- 𝑐𝑝 for dissolved 273 

oxygen). Note that the 𝐺 is estimated for each of the WQ concentration time series as if the 274 

concentration values at different time-steps are independent draws of random variable with the 275 

distribution function 𝐺. The 𝑀 realizations of reconstructed WQ time series will yield 𝑀 values 276 

of 𝑐𝑝 and, in turn, a distribution of 𝑐𝑝. Subsequently, Eq. (12) is used to compute the probability 277 

of compliance. The probability of non-compliance (𝛽𝑝) for a given fraction of permissible 278 

violations (𝑝) is defined as 279 

 𝛽𝑝 = 1 − 𝜅𝑝 . (14) 

Figure 2 shows a graphical illustration of computation of 𝜅𝑝 for a given value of concentration/load 280 

reduction. Fig 2a shows the ensemble of distribution functions 𝐺 of the 10000 reconstructed TP 281 

concentration time series without any concentration/load reduction. At 𝑝 = 0.05, the value of 𝑐𝑝 282 

obtained for one of the realizations of TP time series is shown. Fig 2b shows the histogram of 𝑐𝑝 283 

values obtained in this manner from the ensemble of reconstructed WQ time series. Clearly, all 284 

the 𝑐𝑝 values are above 0.08 mg L−1; therefore, 𝜅𝑝 is zero. Fig. 2c shows the histogram of 𝑐𝑝 285 

values after concentration reduction; the dark green area corresponds to the fraction of the 286 

ensemble time series  that violates the TMDL criterion 0.08 mg L−1  more than 0.05 fraction of of 287 

the times after the concentration reduction. The DST lists percentage compliance (𝜅) with different 288 
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values of permissible violations (p) at different load and concentration reduction in two tables. 289 

Hereafter, we drop the subscript 𝑝  from 𝜅 and 𝛽 for brevity. 290 

The DST computes load reduction required (LRR) at a daily timescale. If the waterbody is required 291 

to be compliant at monthly or annual timescales, then LRR should be computed at monthly or 292 

annual timescales, respectively, and the WQ and TMDL time series should be aggregated from 293 

daily to monthly or annual timescales. Another way of computing LRR is to compute the difference 294 

between average daily load and average TMDL load. Average daily load is the average of the load 295 

over the entire time-period of analysis, and, similarly, the average TMDL is the average of the 296 

TMDL over the entire the period of analysis. The DST also computes average pollutant load in the 297 

waterbody and the difference between average daily load and average TMDL load. We note that 298 

the web based LOADEST tool computes the LRR by computing the difference between average 299 

simulated load and TMDL load but not the LRR at daily timescale. 300 

A TMDL is established based on a threshold concentration below which a waterbody is no longer 301 

impaired. The consequences of water pollution are generally tied to concentration of pollutant in 302 

the water column rather than the total load carried by the waterbody. The value of concentration  303 

in a waterbody, however, depends upon the load introduced into it.  Based on the application, either 304 

load and/or concentration reductions could be important.  For example, a lake (especially a closed 305 

lake) ecosystem will be affected by both the load of TP in the lake-bed and concentrations of TP 306 

in the water column; but a river draining into the lake is likely to be affected only by concentration 307 

of the TP in the water column. In a river, high load of TP with high streamflow may result in low 308 

concentrations which will not affect the river ecosystem but could result in high load of TP to a 309 

receiving lake which will affect the lake ecosystem. The DST reports reductions required both in 310 

terms of constant concentration and constant load. Constant load reduction implies that measures 311 

are taken to reduce the load in the waterbody by the same amount at each day, and same for 312 

constant concentration reduction. However, reductions would be required only during periods 313 

when the waterbody violates the TMDL criterion. If nutrient violations are seasonal, then targeted 314 

pollution control measures only during these periods might achieve compliance. 315 

The DST allows different values of the WQ standard (used in WQ risk analysis) and TMDL 316 

concentration (used in TMDL development). The distinction might be useful when WQ standard, 317 

usually determined by the federal agencies such as USEPA, cannot be met with available resources 318 
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so that a higher (in case of nutrients) or lower (in case of dissolved oxygen) TMDL concentration 319 

value must be used. 320 

 

Fig. 2. Illustration of risk-based total maximum daily load (TMDL) analysis for total phosphorus (TP)   with target 321 
TMDL concentration (𝐶 ∗) of 0.08 mg L−1: (a) calculating 𝑐𝑝 = 𝐹−1(1 − 𝑝) for one of the realizations of 322 

reconstructed water quality (WQ) series with no load or concentration reduction and 𝑝 = 0.05, (b) histogram of 𝑐𝑝 323 
values before any load reduction, and (c) calculating the probability of compliance (κ) from 𝑐𝑝 values that were 324 

obtained after a load reduction of 210 kg day−1 from the realizations of reconstructed WQ time series. 325 

2.4 What if streamflow data is not available at a water quality monitoring station?  326 

Often, WQ monitoring stations in a river-network are not co-located with a streamflow gauge, but 327 

a streamflow gauge may be available in proximity of a WQ monitoring station at a downstream or 328 
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upstream location in the river-network.  In this case, the DST estimates streamflows, 𝑄𝑢, at the 329 

ungauged station as (Emerson et al., 2005; Ries, 2007) 330 

 
𝑄𝑢 = (

𝐴𝑢

𝐴𝑔

)

𝑏

𝑄𝑔, 
(15) 

where 𝐴𝑢 and 𝐴𝑔 are the areas draining to the ungauged and gauged stations; 𝑄𝑔 is the measured 331 

flow rate  at the streamflow gauge;, and 𝑏 is the exponent that varies with geographic region and 332 

climate but may be assumed to be equal to 1 when unknown. Emerson et al. (2005) reported the 333 

values of b equal to 0.85, 0.91, and 1.02 for winter, spring, and summer seasons, respectively, in 334 

Red River of the North Basin (in North Dakota and South Dakota). Typically,  𝑏 = 1 is accurate 335 

for mean-annual flows (Rodriguez-Iturbe and Rinaldo, 2001, chap. 1). The factor (
𝐴𝑢

𝐴𝑔
)

𝑏

 in Eq. 336 

(15) is the watershed area ratio that must be supplied by the user. When streamflow measurements 337 

are available at the WQ sampling site, this conversion factor will be equal to unity. When the 338 

sampling site is located upstream of a streamflow gauge, the conversion factor will be less than 339 

unity; when the sampling site is located downstream of a streamflow gauge, the conversion factor 340 

will be greater than unity (Emerson et al., 2005; Ries, 2007).The watershed area ratio method 341 

assumes that ratio of total volume of water flowing through the ungauged station and gauged 342 

station is a function of drainage area of the two stations. At daily timescale, this assumption will 343 

be valid only if the drainage areas of the gauged and ungauged monitoring stations have significant 344 

overlap; that is, the streamwise distance between the two stations is small. This assumption is 345 

reasonable at annual timescale (Rodriguez-Iturbe and Rinaldo, 2001) but, at daily timescale, it is 346 

valid only in limited situations. At daily timescale, factors such as spatial variability of rainfall 347 

(Gabellani et al., 2007) and difference in land-use and topography will result in differences in the 348 

shape of streamflow time series. At daily timescale, a hydrologic model must be employed to 349 

estimate streamflows at ungauged stations. Gupta and Govindaraju (2019) showed that a simple 350 

hydrologic model calibrated against observations at a gauged location may entail significant 351 

uncertainties in estimated streamflows at ungauged locations. Nevertheless, the DST does not 352 

account for these uncertainties; this topic would be the scope of a different study. The DST 353 

operates at daily timescale; thus, streamflow and WQ data should be available at daily timescale. 354 

Typically, WQ data are collected as grab samples representing instantaneous values. An implic it 355 

assumption in the DST is that instantaneous values represent the average daily values. 356 
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3. Case study 357 

3.1 Study area and data 358 

The DST was used to conduct WQ risk and TMDL analyses in the St. Joseph River Watershed 359 

(SJRW), USA (Fig. 3). The watershed is spread over parts of Indiana, Ohio, and Michigan. A large 360 

part of SJRW is covered with agricultural fields (Fig. 3b). Therefore, agricultural runoff is 361 

expected to be the main contributor of total phosphorus (TP) in the SJRW river-network (IDEM, 362 

2017, pp. 34). A few animal operations and point-sources, in urban areas and large villages, can 363 

potentially contribute TP in some parts of SJRW river-network. Total dissolved solids (TDS) are 364 

solid particles suspended in water column which may consist of nutrients, biological particles such 365 

as algae, and soil particles. Soil particles end up in water column because of channel erosion under 366 

high flow conditions, soil erosion from agricultural areas (livestock grazing, plowing), and urban 367 

areas (construction sites) and, to a limited extent, from forests (IDEM, 2017). 368 

The daily-streamflow data at five stations in the watershed were made available by United States 369 

Geological Survey (USGS, 2016). The TP concentration data at 11 locations and TDS at 14 370 

locations in the watershed were made available through St. Joseph River Watershed Initiative 371 

(SJRWI at http://wqis.ipfw.edu/, accessed: 26 Aug, 2018, Figs. 4 and 5). St. Joseph River (SJR) 372 

and its tributaries are designated for aquatic life use (ALU), recreational use (RU), and warm and 373 

cold habitats (IDEM, 2017). TP and TDS primarily affect ALU; IDEM (2017) reported that many 374 

portions of the SJR and its tributaries were impaired for ALU. They concluded that TP and TDS 375 

load reductions of up to 66% and 95%, respectively, would be required to meet the TMDL 376 

criterion. Figs. 4 and 5 show that all the stations violated TP concentration standards except 377 

stations 123, 128, and 150, and all the stations violated TDS standards. 378 

In this study, the WQ risk and TMDL analyses were restricted to time-period 2000-2017, thus TP 379 

and TDS data were reconstructed using observed streamflow from 01/01/2000 to 12/31/2017. It 380 

should be noted that (a) selection of this time-period is user’s choice as long as there is a time-381 

period where both streamflow and WQ have concurrent measurements. For each TP and TDS 382 

measurement station, streamflow data available at the nearest streamflow measurement station 383 

were used as an input to the DST. For example, for station 122, streamflow data available at the 384 

station USGS 04180000 were used. The required area-ratios (section 2.4) were computed using 385 

http://wqis.ipfw.edu/
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SWAT, though this ratio could be computed using any geographical information system or 386 

available drainage area information.  387 

Concentrations values of 0.08 mg L−1 and 750 mg L−1 were used as WQ standards for calculation 388 

of WQ risk measures with respect to TP and TDS, respectively (SJRWI by http://wqis.pfw.edu/ , 389 

accessed: 26 Aug, 2018); and concentration values of 0.30 mg L−1 and 30 mg L−1 were used for 390 

TMDL development for TP and TDS (IDEM, 2017), respectively. Out of the 9 LOADEST 391 

equations, the one with the best fit based on AIC was used to reconstruct WQ data. Subsequently, 392 

results corresponding to station 122 are discussed in detail and results corresponding to other 393 

stations are summarized for brevity. Henceforth, the analysis conducted using the DST described 394 

in this paper is referred to as rvm-LOADEST, and the analysis without uncertainty quantification 395 

is referred to as deterministic-LOADEST. The deterministic analysis was conducted using the 396 

web-based tool (by Park et al., 2015). The same LOADEST equation was used for reconstruction 397 

in both rvm- and deterministic-LOADEST. LOADEST equations used for TP and TDS 398 

reconstruction at different stations are listed in Appendix A. Note that the DST may also be used 399 

in a deterministic mode by using the expected value of the reconstructed WQ concentration/load 400 

time series and ignoring the information on uncertainty. 401 

http://wqis.pfw.edu/
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Fig. 3. (a) St.  Joseph River watershed (SJRW) with a delineated stream network and locations of total phosphorus 402 
(TP), total dissolved solids (TDS), and streamflow data stations. For TP and TDS, station numbers as listed on 403 
SJRWI website are shown by red triangles and black dots, respectively, and for streamflow, USGS station numbers 404 

are shown by green colored dots. (b) Land use pattern of SJRW. 405 

 406 
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Fig. 4. Observed total phosphorus data at 11 monitoring stations. The solid black line represents TMDL 407 

concentration and dashed black line represents standard concentration. 408 
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Fig. 5. Observed total dissolved solids (TDS) data at (a) all the monitoring stations except 125 (b) monitoring station 409 
125. The observations at station 125 are shown separately because of one instance of exceptionally high value of 410 
TDS at this station. The solid black line represents TMDL concentration and dashed black line represents standard 411 

concentration. 412 

3.2 Results 413 

The run time of DST depends upon the time-period of analysis and number of observations 414 

available for reconstruction. The total runtime of the DST for one WQ monitoring station and one 415 

WQ constituent was approximately 2 minutes  for this case study. 416 

Total Phosphorus (TP) 417 

Except three, all observations were enveloped by the 90% and 95% credible regions which is 418 

expected since all these observations were used for estimation of the weight vector and variance 419 

of residuals (Fig. 6). The uncertainty band was wide, especially in high concentration regions. 420 

Since the land-use in SJRW is dominated by agriculture, high concentrations of TP are expected 421 

to be associated with high agricultural runoff and high streamflows. According to Eq. (4), high 422 

streamflows will result in high prediction variance of TP concentrations. The reconstructed TP 423 

time series obtained by the computing mean of rvm-LOADEST time-series and obtained by 424 

deterministic-LOADEST were approximately the same (Fig. 6). The estimated weights by RVM 425 

were consistently smaller than those obtained by LOADEST, providing better hedging against 426 

errors in streamflow observations (Appendix A1). 427 

 428 

The ranges of R-R-V and WH measures at station 122 were 0.245 to 0.278 (reliability), 0.235 to 429 

0.278 (resilience), 0.572 to 0.593 (vulnerability) and 0.289 to 0.320 (watershed health), 430 

respectively (Table 2). The R-R-V and WH measures obtained by deterministic-LOADEST were 431 

0.007, 0.002, 0.468 and 0.020, respectively. The mean values of the measures obtained by rvm-432 

LOADEST are substantially different from those obtained by deterministic-LOADEST. In fact, 433 

the values of the risk measures obtained by deterministic-LOADEST are not even contained in the 434 

range of those obtained by rvm-LOADEST; this is due to consideration of uncertainty in rvm-435 

LOADEST and the sensitivity of the nonlinear risk measures to slight differences in the WQ 436 

constituent time series. At station 122, the reliability and resilience are low, and the vulnerability 437 

is high. It implies that this station incurs frequent violations of WQ standard and takes a long time 438 

to recover, and severity of violations is also high. Note that if pollution control measures are used 439 
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to increase the resilience of station 122, the reliability would also increase. However, if pollution 440 

control measures are taken to increase the reliability only, the resilience may not increase.  441 

Figure 7 shows the LRR computed by deterministic- and by rvm-LOADEST at different 442 

compliance values and different permissible violations. At most of the stations, the LRR as 443 

computed by using deterministic-LOADEST did not achieve even 50% compliance after the 444 

uncertainty in reconstructed WQ time series was considered. For example, at station 122, the LRR 445 

as obtained by deterministic- and rvm-LOADEST at 𝑝 = 0.10 and 50% compliance were 0 and 446 

35.9 Kg day −1, respectively; the LRR as obtained by deterministic- and rvm-LOADEST at 𝑝 =447 

0.05 and 50% compliance were 0 and 211.6 Kg day −1, respectively; the LRR as obtained by 448 

deterministic- and rvm-LOADEST at 𝑝 = 0.03 and 50% compliance were 75.9 Kg day −1 and 449 

458.5 Kg day −1, respectively. The LRR values as obtained by rvm-LOADESTs are function of 𝜅; 450 

as the 𝜅 increases, the LRR increases. 451 

 452 

 453 
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Fig. 6. Station 122, total phosphorus (TP). Observed and reconstructed daily TP during (a) 2000-2017 and (b) 2014 454 

(the year in which water quality data was available) 455 

 456 

 457 
Table 2. Total phosphorus (TP). The risk-measures obtained by deterministic (D)- and rvm-LOADEST. The 458 

measures are computed at daily timescale. 459 

Station Model 
Type 

RVM statistic Reliability Resilience Vulnerability Watershed 
health 

126 D - 0.183 0.023 0.424 0.134 
 rvm (Mean, Median) (0.363, 0.363) (0.342, 0.342) (0.557, 0.557) (0.381 ,0.381) 
  Range (0.341-0.382) (0.316-0.368) (0.545-0.568) (0.364-0.396) 

150 D - 0.962 0.008  0.202 0.182 

 rvm (Mean, Median) (0.787, 0.787) (0.660, 0.660) (0.448, 0.448) (0.659, 0.659) 
  Range (0.769-0.803) (0.614-0.705) (0.417-0.472) (0.637-0.682) 

159 D - 0.001 0.001 0.300 0.009 

 rvm (Mean, Median) (0.433, 0.433) (0.433, 0.433) (0.587, 0.587) (0.426, 0.426) 
  Range (0.410-0.455) (0.404-0.460) (0.575-0.598) (0.407-0.442) 

127 D  0.720 0.034 0.412 0.244 
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 rvm (Mean, Median) (0.642, 0.642) (0.453, 0.453) (0.482, 0.482) (0.532,0.532) 
  Range (0.622-0.659) (0.418-0.490) (0.465-0.498) (0.515-0.551) 

131 D - 0.428 0.030 0.500 0.180 

 rvm (Mean, Median) (0.596, 0.596) (0.465, 0.465) (0.470, 0.470) (0.528, 0.528) 
  Range (0.578-0.617) (0.431-0.498) (0.454-0.484) (0.510-0.546) 

129 D - 0.813 0.05 0 0.373  0.29  
 rvm (Mean, Median) (0.776, 0.776) (0.478, 0.478) (0.448, 0.448) (0.589, 0.589) 

  Range (0.760-0.791) (0.428-0.529) (0.428-0.473) (0.564-0.615) 

105 D - 0. 807 0.132 0.476 0.382 
 rvm (Mean, Median) (0.658, 0.658) (0.493, 0.493) (0.521, 0.521) (0.537, 0.538) 

  Range (0.633-0.680) (0.446-0.537) (0.502-0.541) (0.516-0.560) 

122 D - 0.007  0.002 0.47 0.020 
 rvm (Mean, Median) (0.265, 0.266)  (0.256, 0.256)  (0.582, 0.582)  (0.305, 0.305)  
  Range (0.245-0.285) (0.235-0.278) (0.572-0.593) (0.289-0.320) 

100 D - 0.464 0.062 0.451 0.250 

 rvm (Mean, Median) (0.477, 0.477) (0.398, 0.399) (0.542, 0.543) (0.443, 0.443) 
  Range (0.457-0.496) (0.370-0.431) (0.530-0.556) (0.426-0.458) 

 460 

 461 
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Fig. 7. Total phosphorus (TP). Daily timescale load reduction required at different station at 462 

permissible violations (𝑝)  463 

 464 
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Total Dissolved Solids (TDS) 465 

The general results obtained for TDS were same as those for TP. The reconstructed TDS time 466 

series obtained by mean of the rvm-LOADEST and deterministic-LOADEST were similar at most 467 

time-steps (Fig. 8b). All except one observation were enveloped by the 90% and 95% credible 468 

regions. Table 3 lists the statistics of R-R-V values obtained by using deterministic- and rvm-469 

LOADEST models. As in case of TP, at many stations, the R-R-V values obtained by 470 

deterministic-LOADEST were outside the range of those obtained by rvm-LOADEST. The 471 

differences between the risk measured obtained by deterministic-LOADEST and the means of the 472 

risk measures obtained by rvm-LOADEST, however, was small. TDS violations occurred only at 473 

a few stations in the watershed. When violations did occur, the resilience of the station was low. 474 

For example, at station 127, the reliability was 0.604 (mean of rvm-LOADEST values) and the 475 

resilience was 0.353 implying if pollution control measures were to be put in place to increase the 476 

resilience of the waterbody, these will also increase the reliability of the waterbody. At most 477 

stations, the vulnerability was low implying that magnitude of violations was small. Overall, the 478 

watershed is in a healthy condition in terms of TDS. 479 

At stations 105 and 122, the deterministic-LOADEST LRR values were larger than rvm-480 

LOADEST LRR values computed at 50% and higher levels of compliance. At most of the stations, 481 

however, the LRR values computed by deterministic-LOADEST at various compliance 482 

percentages were smaller than those computed by deterministic-LOADEST (Table 5). In 483 

summary, if one carries out a deterministic analysis then the computed LRR may not be enough to 484 

comply with TMDL concentration, or may be too conservative as is the case for stations 105 and 485 

122. 486 

  487 

 488 
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Fig. 8. Station 122, total dissolved solids (TDS).  Observed and reconstructed daily TDS during (a) 2000-2017 and 489 
(b) 2014 (the year in which water quality data were available) 490 

 491 

Table 3. Total dissolved solids (TDS). The risk-measures obtained by deterministic (D)- and rvm-LOADEST. The 492 
risk measures are computed at daily timescale. 493 

Station Model 

type 

RVM statistic Reliability Resilience Vulnerability Watershed 

health 

128 D - 1.000 1.000 0.000 1.000 

 rvm (Mean, Median) (1.000, 1.000) (0.999, 1.000) (0.004, 0.000) (0.999, 1.000) 
  Range (1.000) (0.500-1.000) (0.000-0.135) (0786-1.000) 

126 D - 1.000 1.000 0.000 1.000 

 rvm (Mean, Median) (1.000, 1.000) (1.000, 1.000) (0.000, 0.000) ((1.000, 1.000)) 
  Range (1.000) (1.000) (0.000) (1.000) 

150 D - 1.000 1.000 0.000 1.000 
 rvm (Mean, Median) (0.999, 1.000) (0.999, 1.000) (0.015, 0.000) (0.995, 1.000) 

  Range (0.999-1.000) (0.500-1.000) (0.000-0.221) (0.769-1.000) 

159 D - 1.000 1.000 0.000 1.000 
 rvm (Mean, Median) (1.000, 1.000) (1.000, 1.000) (0.000, 0.000) (1.000, 1.000) 
  Range (1.000) (1.000) (0.000) (1.000) 

127 D - 0.581 0.053 0.210 0.29 
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 rvm (Mean, Median) (0.604, 0.605) (0.354, 0.354) (0.298, 0.298) (0.532, 0.532) 
  Range (0.588-0.623) (0.324-0.390) (0.286-0.311) (0.514-0.552) 

131 D - 0.996 0.115 0.020 0.483 

 rvm (Mean, Median) (0.986, 0.986) (0.860, 0.861) (0.066, 0.066) (0.925, 0.926) 
  Range (0.981-0.991) (0.696-1.000) (0.045-0.089) (0.859-0.976) 

123 D - 0.957 0.094 0.055 0.44 
 rvm (Mean, Median) (0.898, 0.899) (0.713, 0.713) (0.107, 0.107) (0.830, 0.830) 

  Range (0.884-0.911)  (0.650-0.779) (0.097-0.122) (0.802-0.857) 

129 D - 1.000 1.000 0.000 1.000 
 rvm (Mean, Median) (0.999, 0.999) (0.965, 1.000) (0.0497, 0.048) (0.971-0.982) 

  Range (0.998-1.000) (0.333-1.000) (0.000-0.229) (0.680-1.000) 

125 D - 1.000 1.000 0.000 1.000 
 rvm (Mean, Median) (1.000, 1.000) (1.000, 1.000) (0.000, 0.000) (0.1000, 1.000) 
  Range (1.000) (1.000) (0.000-0.058) (0.980-1.000) 

124 D  1.000 1.000 0.000 1.000 

 rvm (Mean, Median) (0.999, 1.000) (0.998, 1.000) (0.034, 0.029) (0.987, 0.990) 
  Range (0.996-1.000) (0.50-1.00) (0.000-0.240) (0.764-1.000) 

105 D - 0.999 0.125 0.054 0.491 
 rvm (Mean, Median) (0.915, 0.915) (0.769, 0.769) (0.165, 0.165) (0.837, 0.839) 

  Range (0.903-0.928) (0.693-0.835) (0.146-0.184) (0.807-0.864) 

122 D - 1.000 1.000 0.000 1.000 
 rvm (Mean, Median) 1.000 1.000 0.000 1.000 

  Range (1.000) (1.000) (0.000) (1.000) 

100 D - 1.000 1.000 0.000 1.00 
 rvm (Mean, Median) (0.996, 0.998) (0.981, 1.000) (0.045, 0.044) (0.978, 0.983) 
  Range (0.995-1.000) (0.750-1.000) (0.014-0.122) (0.898-0.995) 

Output not available from web-based LOADEST for station 219 
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Fig. 9. Total dissolved solids (TDS). Daily time scale load reduction required at different station 496 

at permissible violations (𝑝) 497 

3.3 Discussion 498 
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In case of TP, the R-R-V measures obtained by deterministic-LOADEST were not even in the 499 

range of those obtained by rvm-LOADEST. This discrepancy is due to the assumption of statistical 500 

independence of errors in the reconstructed TP series at different time-steps and high sensitivity 501 

of these measures when the WQ concentration series is near the standard series. The discrepancy 502 

exists even though the reconstructed TP time series obtained by deterministic-LOADEST was 503 

approximately equal to the mean of the TP time series obtained by rvm-LOADEST. Out of 10,000 504 

MC realizations of TP time series, there were many realizations that were close to the mean 505 

realization. But no realization was identical to the mean time series because of the added error-506 

term in rvm-LOADEST. The difference between mean and actual realization of TP time series 507 

translated into large differences in estimated R-R-V measures because these measures are 508 

extremely sensitive to small changes in TP time series, especially when TP time series is close to 509 

the standard time series. Thus, if one were to simply take the mean values estimated by LOADEST 510 

and not account for uncertainty in these estimates, the assessment of WQ risk may be erroneous.  511 

Since the discrepancy in R-R-V measures obtained by rvm-LOADEST and deterministic -512 

LOADEST is due to statistical assumptions over the residual time series, this discrepancy also 513 

illustrates the importance of the assumptions in uncertainty analysis. This discrepancy can be 514 

resolved only if the statistical assumptions are such that they allow to draw the mean WQ 515 

constituent time series from the distribution. Moreover, evidence supports the hypothesis that a 516 

watershed that yields a WQ constituent time series with high positive autocorrelation is less 517 

resilient to perturbations (such as high pollutant load in the watershed) (Qi et al., 2016). Thus, 518 

introducing artificial correlations to reconstructed WQ constituent time series by means of 519 

statistical assumptions over the error-term may lead to misleading conclusions. There is no way to 520 

confirm if the statistical assumptions made are valid; QQ plots can tell us if the assumption are 521 

invalid, not if the assumptions are correct. One of the problems in probabilistic uncertainty 522 

quantification is the non-uniqueness of possible statistical assumptions that can fit the data.  523 

To check the effectiveness of MOS value used in TMDL reports (e.g., IDEM, 2017), the MOS 524 

was computed using the same method as in IDEM (2017) (see SI). Specifically, five different 525 

TMDLs were computed for five different flow regions in each of the streams. The five flow regions 526 

were determined using daily exceedance probability (DEP) as follows : high flows (0 − 0.10 527 

DEP), moist conditions (0.10 − 0.40 DEP), mid-range (0.40 − 0.60 DEP), dry conditions (0.60-528 

0.90 DEP), and low flows (0.90 − 1.00 DEP). The results are discussed for high flow conditions 529 
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only. As per rvm-LOADEST, up to 1000%  of the TMDL should be allocated as MOS to achieve 530 

50% compliance (Figs. S3 and S4). An MOS value greater than 100% implies that the maximum 531 

allowable load in the watershed cannot be determined reliably. IDEM (2017) report did not 532 

explicitly quantify uncertainties. The cases study illustrates how a deterministically estimated WQ 533 

times-series may lead to different conclusions than one that quantifies the effects of uncertainty. 534 

Authors of IDEM (2017) report used SWAT to simulate WQ constituent time series. SWAT is 535 

known to incur high uncertainties (Hollaway et al., 2018) but this information was not utilized in 536 

MOS specification. 537 

To reconstruct WQ constituent time series, the DST assumes that logarithm of load and logarithm 538 

of streamflow are correlated. If the correlation is weak, the prediction accuracy of the model will 539 

be poor and the uncertainty band will be wide. To check the prediction accuracy of rvm-540 

LOADEST, the observed and predicted mean values of TP and TDS were plotted; the results 541 

suggested that one can indeed reconstruct TP and TDS loads by using streamflow values as 542 

predictor variables (Figs. S5 andS6). In case of both TP and TDS, 90 to 100% of the observations 543 

were enveloped by the 90% credible region with a few exceptions (Tables S3 and S4). Moreover, 544 

the methodology adopted in the DST is valid only if the relationship between streamflows and 545 

pollutant loads remains unchanged during the period of analysis. If this relationship changes, 546 

model predictions will be poor. The relationship could change because of pollution control 547 

measures put in the drainage area during the period of analysis, but not during the observation 548 

period and change of rainfall-runoff-pollutant load relationship (due to climatic and/or land use 549 

changes), Thus, the DST cannot be used for future scenario analyses indiscriminately.  550 

Further, the DST assumes that the residuals at different time-steps are statistically independent. If 551 

this assumption is invalid, the consequence would be over-estimation of information content in 552 

residuals which would result in under-estimation of uncertainty in 𝒘 and, in-turn, an under-553 

estimation of uncertainty in predicted loads. For convenience of analysis, the DST assumes that 554 

residuals are distributed according to Gaussian law with homoscedastic variance. To check the 555 

validity of these statistical assumptions, QQ plots were used (Figs. S7-S10). These plots revealed 556 

that the observed residuals did not satisfy the assumptions made by DST, implying that 557 

uncertainties in WQ reconstruction as reported in this study may be underestimated. One way of 558 

relaxing the assumption of independence is to model the residuals as an autoregressive (AR) 559 

process (e.g., Hantush and Chaudhary, 2014). In this process, the residual at a time-step is 560 
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regressed against (𝑘 − 1) residuals at previous consecutive time-steps. Future versions of DST 561 

will be updated to accommodate this analysis.  562 

Data limitations are ubiquitous in modeling exercises. In principle, there is no established 563 

restriction on the minimum number of observations to apply the DST. However, since the DST 564 

reconstructs WQ time series using a statistical regression method, very few observations may 565 

translate into over- or under-estimation of uncertainty. More observations imply better uncertainty 566 

estimates. For reference, Schwarz et al. (2006) suggested 15 observations to estimate annual 567 

average loads, and we suggest this number as a lower limit.  568 

4. Summary and conclusions 569 

A DST was developed to reconstruct WQ constituent time series and conduct risk-based WQ 570 

assessment and TMDL development. The DST uses RVM to incorporate uncertainty in 571 

reconstruction of WQ constituent time series. The tool estimates uncertainty due to residual errors 572 

in reconstructed WQ time series, allows users to propagate this uncertainty to R-R-V and WH risk 573 

assessment and TMDL estimation. These two applications of the DST were demonstrated for the 574 

SJRW. The following conclusion were drawn: 575 

(1) The weights estimated by RVM are consistently smaller than those compared to web based 576 

LOADEST; the smaller weights are desirable because they hedge against errors in 577 

streamflows. 578 

(2) Based on our experience, we expect WQ risk measures  to be very sensitive to small 579 

changes in WQ constituent time series especially when realizations of loads/concentrations 580 

are close to the standard values; therefore, errors in the reconstruction of WQ constituent 581 

time series must be modeled to obtain a realistic estimate of WQ risk measures of a 582 

waterbody. This sensitivity, however, also illustrates the importance of realistic statistical 583 

assumptions over the error-term. 584 

(3) At most stations, consideration of uncertainty in WQ risk measures led to very different 585 

conclusions about watershed health. Uncertainty analysis indicated a relatively poorer 586 

health at some WQ monitoring stations and a relatively better health at other WQ 587 

monitoring stations. 588 

(4) The LRR values at daily timescale as yielded by a deterministic analysis may not be enough 589 

to achieve even 50% compliance. Uncertainty in LRR should be considered for effective 590 
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pollution control. The arbitrarily selected MOS values used in TMDL report may result in 591 

gross under-estimation of uncertainty. Therefore, MOS values should be based upon a 592 

systematic uncertainty analysis (as was also suggested by Reckhow, 2003).  593 

As presented, the tool is restricted to quantifying uncertainty due to residual errors. It is possible 594 

to use the RVM methodology to explicitly incorporate measurement errors in streamflows, which 595 

will be the topic of future research.  596 
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 761 

APPENDIX A 762 

Table A1. List of LOADEST equations used for total phosphorus (TP) reconstruc tion at different 763 
monitoring stations in the study area 764 

Station TP Weights Variance of 
ln𝑦 

100 4 D:       ln𝑦 =3.64 + 1.62lnQ − 0.26 sin(2πδt) − 0.30cos(2πδt) 
RVM: ln𝑦 = 3.67 + 1.58lnQ − 0.17sin(2πδt) − 0.22 cos(2πδt) 

D: 0.52 
RVM: 0.52 

105 8 D:       ln𝑦 = 1.15 + 1.39lnQ + 0.13lnQ2 − 0.28sin(2πδt) −
0.39cos(2πδt) + 0.12δt 
RVM: ln𝑦 = 1.30 + 1.35lnQ + 0.11lnQ2 − 0.11sin(2πδt) −
0.24cos(2πδt) + 0.10δt  

D: 0.49 
RVM:0.49 

122 1 D:       ln𝑦 =3.65 + 1.35lnQ 
RVM: ln𝑦 =3.65 + 1.33lnQ  

D: 0.35 
RVM: 0.34 

126 1 D:       ln𝑦 =3.17 + 1.38lnQ 
RVM: ln𝑦 =3.16 + 1.37lnQ  

D: 0.50 
RVM: 0.50 

127 3 D:       ln𝑦 = −0.85 + 1.28lnQ + 0.17δt 
RVM: ln𝑦 = −0.85 + 1.27lnQ + 0.15δt  

D: 0.46 
RVM: 0.45 

129 3 D:       ln𝑦 = 0.82 + 1.28lnQ + 0.20δt 
RVM: ln𝑦 = 0.82 + 1.28lnQ + 0.18δt  

D: 0.47 
RVM: 0.47 

131 7 D:       ln𝑦 = 0 .013 + 1.30lnQ − 0.51sin(2πδt) − 0.61cos(2πδt) +
0.09δt 
RVM: ln𝑦 = 0 + 1.30lnQ − 0.50 sin(2πδt) − 0.62cos(2πδt) + 0.05δt  

D: 0.45 
 
RVM: 0.44 
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150 7 D:       ln𝑦 = −1.35 + 1.01lnQ − 0.03sin(2πδt) − 0.54cos(2πδt) +
0.30δt 
RVM: ln𝑦 = −1.26 + 1.00lnQ + 0 sin(2πδt) − 0.41 cos(2πδt) + 0.24δt  

D: 0.33 
 
RVM: 0.32 

159 1 D:       ln𝑦 =0 + 1.02lnQ 
RVM: ln𝑦 =0.000014 + 1.02lnQ  

D: 1.11 
RVM: 1.05 

 765 

Table A2. TP. Estimated covariance matrix of weights at station 122 using RVM 766 
 𝑎0 𝑎1 

𝑎0 0.013380 0.005026 
𝑎1 0.005026 0.016743 

 767 

Table A3. List of LOADEST equations used for total dissolved solids (TDS) reconstruction at different 768 
monitoring stations in the study area 769 

Station TDS Weights Variance of  
ln 𝑦 

100 6 D:       ln𝑦 = 12.04 + 0.82lnQ − 0.02lnQ2 + 0.02sin(2πδt) +
0.08cos(2πδt) 
RVM: ln𝑦 = 12.05 + 0.83lnQ− 0.02lnQ2 + 0.01sin(2πδt) +
0.07cos(2πδt)  

D: 0.034 
RVM=0.034 

105 1 D:        ln 𝑦 = 10.21 + 0.76lnQ 
RVM: ln𝑦 = 10.21 + 0.75lnQ 

D: 0.19 
RVM: 0.19 

122 4 D:       ln𝑦 = 11.62 + 0.97lnQ + 0 .05sin(2πδt) + 0.09 cos(2πδt) 
RVM: ln𝑦 = 11.65 + 0.94lnQ+ 0 sin(2πδt) + 0.04cos(2πδt) 

D: 0.01 
RVM: 0.01 

123 9 D:       ln𝑦 =9.76 + 0.84lnQ − 0.05lnQ2 − 0.04sin(2πδt) +
0.03cos(2πδt) + 0.01δt + 0δt2 
RVM: ln𝑦 =9.75 + 0.84lnQ − 0.05lnQ2 − 0.02sin(2πδt) +
0 cos(2πδt) + 0.01δt + 0δt2 

D: 0.04 
RVM: 0.04 

124 3 D:      ln 𝑦 = 10.75 + 0.85lnQ − 0.03δt 
RVM:ln 𝑦 = 10.75 + 0.85lnQ − 0.03δt 

D: 0.05 
RVM: 0.05 

125 1 D:       ln𝑦 = 10.80 + 1.00lnQ 
RVM: ln𝑦 = 10.80 + 1.00lnQ 

D: 0.07 
RVM: 0.07 

126 9 D:       ln𝑦 =11.37 + 0.92lnQ − 0.03lnQ2 + 0 sin(2πδt) + 0 cos(2πδt) −
0.01δt + 0δt2 
RVM: ln𝑦 =11.37 + 0.92lnQ − 0.03lnQ2 + 0 sin(2πδt) + 0 cos(2πδt) −
0.01δt + 0δt2 

D: 0.01 
RVM: 0.01 

127 7 D:       ln𝑦 = 8.14 + 0.73lnQ − 0.05sin(2πδt) − 0.04 cos(2πδt) −
0.027δt 
RVM: ln𝑦 = 7.99 + 0.71lnQ + 0 sin(2πδt) + 0 cos(2πδt) − 0.03δt 

D: 0.09 
RVM: 0.10 

128 2 D:        ln 𝑦 = 6.79 + 0.85lnQ − 0.04lnQ2 
RVM: ln𝑦 = 6.80 + 0.85lnQ − 0.04lnQ2 

D: 0.02 
RVM: 0.02 

129 9 D:       ln𝑦 =9.24 + 0.96lnQ − 0.02lnQ2 − 0.13sin(2πδt) +
0.09cos(2πδt) + 0δt + 0.01δt2 
RVM: ln𝑦 =9.23 + 0.96lnQ − 0.02lnQ2 − 0.12sin(2πδt) +
0.09cos(2πδt) + 0δt + 0.01δt2 

D: 0.03 
RVM: 0.03 

131 9 D:       ln𝑦 =9.21 + 0.86lnQ − 0.04lnQ2 + 0.06sin(2πδt) +
0.07cos(2πδt) + 0δt + 0δt2 
RVM: ln𝑦 =9.19 + 0.86lnQ − 0.04lnQ2 + 0.05sin(2πδt) +
0.06cos(2πδt) + 0δt + 0.01δt2 

D: 0.03 
RVM: 0.03 

150 9 D:       ln𝑦 =7.58 + 0.86lnQ − 0.01lnQ2 − 0.11sin(2πδt) −
0.09cos(2πδt) − 0.02δt − 0.01δt2 
RVM: ln𝑦 =7.55 + 0.87lnQ − 0.01lnQ2 − 0.09sin(2πδt) −
0.07cos(2πδt) − 0.02δt − 0.01δt2 

D: 0.04 
RVM: 0.04 
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159 6 D:       ln𝑦 = 9.05 + 0.90lnQ − 0.04lnQ2 − 0.04sin(2πδt) −
0.04cos(2πδt) 
RVM: ln𝑦 = 9.04 + 0.91lnQ − 0.04lnQ2 − 0.03sin(2πδt) −
0.02cos(2πδt) 

D: 0.01 
RVM: 0.01 

 770 

Table A4. TDS. Estimated covariance matrix of weights at station 122 using RVM 771 
 𝑎0 𝑎1 𝑎2 

𝑎0 0.000705 0.000071 -0.000676 
𝑎1 0.000071 0.000421 0.000128 
𝑎2 -0.000676 0.000128 0.001286 
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