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ABSTRACT 8 

Droughts are characterized by drought indices that measure the departure of meteorological and 9 

hydrological variables, such as precipitation and streamflow, from their long-term averages. While 10 

many drought indices have been proposed in the literature, most of them use pre-defined thresholds 11 

for identifying drought classes ignoring the inherent uncertainties in characterizing droughts. This 12 

study employs a hidden Markov model (HMM) for probabilistic classification of drought states. 13 

Apart from explicitly accounting for the time dependence in the drought states, the HMM-based 14 

drought index (HMM-DI) provides model uncertainty in drought classification. The proposed 15 

HMM-DI is used to assess drought characteristics in Indiana using monthly precipitation and 16 

streamflow data. The HMM-DI results were compared to those from standard indices and the 17 

differences in classification results from the two models were examined. In addition to providing 18 

probabilistic classification of drought states, the HMM model is suited for analyzing spatio-temporal 19 

characterization of droughts of different severities.  20 
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1. Introduction 21 

Droughts are amongst the world’s costliest disasters with an annual cost estimated in the range of $6 - 22 

$8 billion (Federal Emergency Management Agency 1995). Unlike other natural disasters such as 23 

floods and earthquakes, droughts are more difficult to detect because they creep slowly and are 24 

already a serious threat before they are detected. Droughts have major impacts on agriculture, natural 25 

habitats and ecosystems, and economies of affected regions. Modeled results from climate change 26 

scenarios  indicate that droughts are likely to intensify over many parts of the world in the next 20-50 27 

years (Dai 2011), suggesting the need for more granularity in drought classification to assess drought 28 

impacts accurately for appropriate mitigation strategies.  29 

Based on the data used for the analyses, droughts have been typically classified as meteorological, 30 

agricultural, and hydrological droughts (Dracup et al. 1980). Detailed reviews on different types of 31 

droughts, their definitions, and the indices used to characterize droughts are available in the literature 32 

(Dracup et al. 1980; Heim 2002; Mishra & Singh 2010; Dai 2011).  Although drought indices use 33 

different forms of water deficits to characterize droughts, the results often do not correspond well 34 

among the indices owing to the complex physics that involves precipitation, infiltration, 35 

evapotranspiration, groundwater, base flow and direct runoff. Since the definition of a drought is very 36 

subjective, no single index is able to address all the causes or impacts of droughts. The desirable 37 

characteristics of a drought index (Friedman 1957; Heim 2002) are: 1) flexibility to accommodate 38 

appropriate timescale to address the problem at hand; 2) ability to measure longer duration droughts; 39 

3) applicability to the problem being studied; 4) ability to utilize long historical records; and 5) being 40 

computable at or near real-time basis.  41 

Researchers have addressed the problem of drought assessment using different approaches such as 42 

non-linear models, hybrid models and artificial neural networks (Shin & Salas 2000; Kim & Valdés 43 

2003; Mishra et al. 2007). Copulas have  been widely used for modeling the joint dependence 44 
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structure of drought characteristics, namely intensity, duration and severity (Wong et al. 2009; 45 

Madadgar & Moradkhani 2011). Kao and Govindaraju (2010) proposed a joint deficit index (JDI) that 46 

uses empirical copulas to provide probability-based description of overall drought status. Hao and 47 

Singh (2012) proposed the use of entropy theory for constructing bi-variate joint distribution of 48 

drought duration and severity, and provided comparisons with a copula-based analysis. To overcome 49 

some of the limitations of parametric frequency analysis, Kim et al. (2006) proposed a non-parametric 50 

approach for characterizing the joint behavior of droughts.  51 

One drought index that has gained popularity because of its robustness, computational simplicity, and 52 

ability to accommodate different time scales is the standardized precipitation index (SPI; McKee et al. 53 

1993). For a specified time window, accumulated historic precipitation time-series data are used to 54 

estimate the probability distribution function and the quantiles of precipitation. The SPI drought index 55 

is then computed by applying the inverse standard normal distribution function transformation to the 56 

quantiles, making the index values distributed according to a standard normal distribution. SPI values 57 

are dimensionless with negative values indicating drought conditions, and the magnitudes of their 58 

departures from zero indicating drought severity. The index has been useful to the community, but it 59 

has some  limitations:  60 

 With the use of fixed thresholds, the frequency of occurrence of droughts is the same for all 61 

window sizes and for all stations/regions. While it allows comparisons of drought severities 62 

for different locations at a given snapshot in time, it cannot identify drought-prone areas 63 

(Lloyd-Huges & Saunders 2002).  64 

 For a site where precipitation has small variability, even a small difference in precipitation 65 

can lead to differing drought classifications (Lloyd-Huges & Saunders 2002).  66 

 Accumulated precipitation values over a specified time window are assumed to be 67 

independent while estimating SPI; this may not be true for larger window sizes (greater than 68 
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12 months). Droughts do persist over longer time scales (from few months to several years). 69 

Though it is reported in the literature that SPI values are not reliable at time-scales longer 70 

than 24 months (Guttman 1999), there are several studies that have investigated multi-year 71 

droughts (McKee et al. 1993; Vicente-Serrano 2006). The issue of temporal dependence 72 

becomes more poignant for droughts longer than a year. In order to work with non-73 

overlapping segments for SPI, the record length is effectively reduced.  74 

Further, no attempts have been made to account for the inherent uncertainties in classifying a drought 75 

state using SPI analysis. Drought-affected regions receive aid based on an assessment of the severity 76 

of existing droughts. Drought-readiness schemes are also based on drought classification. Just as in 77 

case of floods, decision makers are interested in knowing the uncertainty in drought classification. 78 

The allocation of resources and response capabilities of communities will benefit from a probabilistic 79 

analysis (Hayes et al. 2004). While many sources of uncertainty exist, the need for an index that 80 

provides model uncertainty through a probabilistic classification of drought classes was strongly 81 

expressed by decision makers and planners in a recent drought workshop 82 

(http://drinet.hubzero.org/tags/ddad2011, http://drinet.hubzero.org/resources/354). Most drought 83 

indices were designed for assessment of current conditions only, and offer limited or no predictive 84 

ability. The US Drought Monitor (USDM; Svoboda et al. 2002) is the most popular source for 85 

information on current drought conditions. In the USDM, drought severity levels (D0-D4) are based 86 

on percentile rankings of various indicators to depict existing drought conditions 87 

(http://drought.unl.edu/dm/monitor.html).  While the various indices have allowed for characterizing 88 

droughts, they are limited by their inability to offer an estimate of uncertainty in classification of 89 

drought states. Further, the methods used for drought classification do not account for the temporal 90 

dependence in drought states – a limitation that inhibits forecasting capabilities.  91 

The goal of this paper is to propose and evaluate a new drought index based on hidden Markov model 92 

(HMM; e.g., Rabiner 1989). The HMM is a statistical model in which the observations from a system 93 

http://drought.unl.edu/dm/monitor.html
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are assumed to be conditioned on unobserved or hidden states that follow a Markov process. To 94 

conform to the US Drought Monitor, the number of hidden states in the HMM model was set to 11 95 

where droughts are classified into 5 classes (D0-D4) based on SPI thresholds as in Table 1. In 96 

addition, the HMM model can identify a normal state (N) and 5 wet states (W0-W4). Similar to the 97 

Joint Deficit Index (Kao & Govindaraju 2010), the HMM-based index (HMM-DI) can be generalized 98 

to other hydrologic variables. 99 

Given a time window, both SPI and HMM-DI utilize a time series of cumulative values of the 100 

hydrologic variable (precipitation or streamflow in this case). The HMM-DI provides probabilistic 101 

classification of drought states reflecting model uncertainty. Because of overlapping time intervals, 102 

the time series will be correlated for windows greater than one month. As shown by mutual 103 

information analysis in Appendix 1, the series of drought states yielded by SPI are dependent. The 104 

HMM-DI offers the advantage of engaging this information explicitly and possesses generative 105 

capabilities.  106 

The remainder of the paper is organized as follows: first the data used in the study are described. The 107 

mathematical formulation of the HMM-DI is presented. The results obtained in this study are 108 

discussed along with comparisons to SPI. The strengths and limitations of the proposed HMM-based 109 

drought index are listed, and finally the study conclusions are presented. 110 

 111 

2. Data Used 112 

Precipitation and streamflow data from the state of Indiana, located in mid-west United States, were 113 

used in this study.  Indiana has complex climate patterns with distinct seasons - winters are cold, 114 

springs are characterized by thunderstorms and tornadoes, summers are very humid with high 115 

temperatures, and autumns are sunny with low humidity. Indiana is located within the US Corn belt; 116 
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hence agriculture is one of the major contributors to the state’s economy and droughts have 117 

significant economic and social impact in the state.  118 

Monthly streamflow data were obtained from the United States Geological Survey (USGS). 119 

Streamflow measurements are subjected to human interference, and therefore the data contain both 120 

regulated and unregulated flow measurements. For this study, only unregulated streamflow data were 121 

used for drought analysis. A total of 36 unregulated USGS gauging stations (see also Kao & 122 

Govindaraju 2010) were identified for the study area as shown in Figure 1. Monthly mean discharges 123 

for all the 36 stations were collected. The record length for each of these stations is more than 50 124 

years. 125 

Precipitation data were obtained from daily surface data set (TD 3200) of co-operative (COOP) 126 

stations from National Climatic Data Center (NCDC). A total of 75 COOP stations were available 127 

with data record length greater than 50 years. If the data were missing for an entire month, they were 128 

replaced by the historic mean of that specific month (Kao & Govindaraju 2010). Monthly average 129 

precipitation data for the nine climatic divisions of Indiana (shown in Fig. 1) were also obtained from 130 

NCDC. 131 

        132 

3. Methodology 133 

3.1 Mathematical formulation: Hidden Markov Model (HMM) 134 

The HMM (e.g., Rabiner 1989) is a statistical model where observations from a system are assumed 135 

to be conditioned on the state of the system. The state is hidden (i.e. not observed) and satisfies the 136 

Markov property. The HMM was developed in late 1960s and early 1970s for speech recognition, and 137 

it has since been used successfully in many applications including hydrology and climate modeling 138 

(Thyer & Kuczera 2003; Robertson et al. 2003; Robertson et al. 2004). The mathematical formulation 139 
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of the HMM used in this work is described in Tripathi and Govindaraju (2009), and is briefly 140 

presented in the following paragraphs. 141 

Let the hydrologic variable of interest at time t  be denoted by tx , 1t N  { tx R and 142 

1 1:[ , , ] }.T

N NX x x x 
 
In HMM, the quantity tx  is assumed to depend on the state variable tz ,143 

1 1:{ [ , , ] }T

N NZ z z z   that denotes drought states, is hidden, and follows the first order Markov 144 

property. The state variable tz  is a discrete random variable with K values (drought states), 145 

{1,2,..., }.K  The HMM model can be graphically represented as shown in Figure 2. HMM makes 146 

three assumptions about the underlying process being modeled: 147 

1. The drought state tz  evolves according to (first-order) Markov property. Given the drought 148 

state at the previous month 1tz  , the drought states in the current and future months are 149 

independent of past drought states 2 1( ,..., )tz z , i.e. 1 2 1 1( | , ,..., ) ( | ).t t t t tP z z z z P z z    150 

The probabilities 1( | )t tP z z   are referred to as transition probabilities. 151 

2. Given the current drought state tz , the monthly observation tx  for that month is assumed to 152 

be conditionally independent of the observations or drought states of other months, 153 

1: 1 1:( | , ) ( | )t t t t tP x x z P x z  .  The probability distributions ( | )t tP x z  are referred to as 154 

emission distributions.  155 

3. The transition and emission probabilities depend only on the drought states and 156 

observations, and not on the time series index of the observation, 157 

1 1( | ) ( | )t t l lP z k z j P z k z j       and ( | ) ( | )t t l lP x x z k P x x z k     . 158 

Further, assuming the number of states K  is known a priori, the joint distribution over the SPI 159 

categories and monthly hydrologic observations decomposes as a product160 
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 161 

1: 1: 1 1

2 1

( , ) ( ) ( | ) ( | )
N N

N N t t t t

t t

P z x P z P z z P x z

 

   . (1) 162 

An HMM can be completely described by: 163 

a) The conditional distribution of the hydrologic variable given the drought state, ( | )t tP x z  164 

referred to as emission distribution. 165 

b) The conditional distribution of the present drought state given the previous drought state i.e. 166 

1( | )t tP z z  . Because tz  is a K - valued discrete variable, the conditional distribution is given 167 

by a K K  transition matrix A  with elements 1( | )jk t tA p z k z j   . 168 

c) Marginal distribution of the drought state at the first time step, 1( )p z given by K - 169 

dimensional vector with 1( ).k P z k    170 

 The posterior probability of being in a state tz k  at time t  is given by 171 

1

( ) ( )
( | , )

( ) ( )

t t
t K

t t

j

k k
P z k X

j j

 


 


 


  (2) 172 

where 1 2( ) ( , , , , | )t t tk P x x x z k   and 1 2( ) ( , , , , | )t t t N tk P x x x z k    , and   173 

represents the set of model parameters, namely the parameters of the emission distributions ( ), the 174 

transition matrix ( )A  and the initial distribution of the states ( ).  175 

For a drought index, a definition of drought states that remains unaltered irrespective of the location 176 

of a drought is desirable. To achieve this property, the following two steps are taken: 177 

a) The data at any desired time scale (from one month out to several years) are transformed 178 

to departures from the mean. This step brings the data from different locations to a 179 
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common baseline for comparison purposes. The HMM model is applied to the 180 

transformed data.  181 

b) The probability density function for the emission distribution is chosen to be a Gaussian 182 

distribution of the form 183 

2( | ) ( | , ).t t t k kp x z k N x   
 (3)

 184 

where k  and 
2

k  are the mean and the variance of a Gaussian distribution, respectively. Because the 185 

states are hidden (i.e. not observed), the true nature of emission distributions cannot be determined 186 

a priori. The choice of Gaussian emission distribution is primarily for mathematical convenience. 187 

Many complex processes combine to create droughts, and one may expect that their combined 188 

influence, expressed through deviations from the mean, to be Gaussian. Finally, if there is no 189 

temporal dependence in the drought states, the HMM automatically collapses to a Gaussian mixture 190 

model (GMM) for which theories are well developed (Reynolds & Rose 1995). Since the results of 191 

the developed drought index are compared with SPI, the number of states (components in the 192 

Gaussian mixture) K  was set to 11 (D0-D4, N, W0-W4) as described earlier. Unlike SPI where 193 

thresholds are fixed (see Table 1) for drought classification, HMM-DI utilizes a data-driven approach 194 

to estimate  the parameters of the emission distributions. The k ’s and k ’s for all the components 195 

of the emission distribution were learnt from the data in a maximum likelihood framework using the 196 

Baum-Welch algorithm as described in Rabiner (1989).  197 

3.2 Data Preprocessing and Drought Analysis 198 

The first step in computing a drought index is to collect and pre-process the required data for the 199 

study area. The record length of monthly precipitation and streamflow data for all the stations is at 200 

least 50 years. Time windows of i  months, where i  is 1, 3, 6 and 12 months, were chosen to 201 

represent typical time scales for precipitation and streamflow deficits. Accumulated monthly 202 
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precipitation and streamflow time-series were computed corresponding to each time window and for 203 

each ending month to account for seasonality as in Kao and Govindaraju (2010). For computing 204 

standardized indices, the time-series data were then used to estimate the parameters of the best fit 205 

Gamma distribution. The cumulative density function (cdf) of the Gamma distribution was 206 

standardized using the standard inverse Gaussian function to compute the SPI drought index. As 207 

stated earlier, a negative value of SPI indicates drought conditions and the magnitude of its departure 208 

from zero indicates the severity of drought. Standardized streamflow index (SSI; Kao & Govindaraju 209 

2010) was computed along similar lines as the standardized runoff index (SRI; Shukla & Wood 210 

2008), using time series of streamflow to estimate the parameters of the best fit Gamma distribution. 211 

The cdf of Gamma distribution was also standardized using standard inverse Gaussian function to 212 

obtain SSI values. 213 

According to McKee et al. (1993), a drought event begins when SPI takes a value of -1.0 or less and it 214 

ends when SPI becomes positive. In this study, since drought classes are defined to coincide with 215 

designations in the US Drought Monitor, a drought event would begin when the SPI took a value of 216 

-0.5 or less and it ended when SPI was positive. Thus each drought event had a duration defined by its 217 

beginning and end, and an intensity for each month the drought event prevailed. Based on the above 218 

definition, the following statistics were noted for SPI: the number of drought events; duration of the 219 

drought events; and number and average duration of droughts under each drought category (D0-D4).  220 

For HMM-DI computations, the cumulative monthly time-series data for both precipitation and 221 

streamflow were transformed to represent departures from the mean. The HMM model was applied to 222 

the transformed data to obtain the probabilistic classification of drought states, i.e. for each time step 223 

and a specified window size, the HMM yielded a probability value associated with all the 11 states. In 224 

this study, a drought event was defined to begin when the sum of posterior probabilities (Equation 2) 225 

of being in D0-D4 states was greater than or equal to 50%, and the drought event ended when it was 226 

less than 50%. During a drought event, the drought state with the highest probability was selected as 227 
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the drought category for the time-step. To enable comparisons with SPI, the following HMM-DI 228 

statistics were estimated: the number of drought events; the duration of drought events; and number 229 

and average duration of droughts under each drought category (D0-D4). 230 

 231 

4. Results and Discussions 232 

       4.1 Comparison of HMM-based drought index (HMM-DI) and SPI 233 

The HMM-DI and SPI were computed for all the 75 COOP precipitation stations in Indiana for time 234 

windows of 1, 3, 6 and 12 months. The 1-month HMM-DI and SPI for station 120132 at Alpine 2 235 

NE, IN for a 5-year block of 1985-89 are shown in Fig. 3a. The HMM-DI provides probabilistic 236 

classification of drought states with the height of each bar indicating the probability of a particular 237 

drought, whereas SPI provides a discrete classification. Both models classify the drought states into 5 238 

categories-Abnormally dry, Moderate, Severe, Extreme, and Exceptional (D0-D4). These drought 239 

categories are represented in the plot using a legend, and the absence of color indicates a no-drought 240 

condition. The precipitation data used in computing the drought states are shown as a line plot. Fig. 241 

3a shows that HMM-DI classifies January 1987 as a D2 category drought with probability >55% and 242 

as a D1 category drought with probability ~40%, whereas SPI classifies this month to a D2 category 243 

drought. For the next month, the HMM-DI classifies February 1987 into D1 category drought with 244 

>90% probability and into D2 category drought with ~5% probability, but SPI classifies it as D4 245 

drought. When precipitation increases in March 1987, SPI classifies it as a normal state, thereby 246 

indicating complete recovery from D4 drought of the previous month whereas HMM-DI classifies it 247 

as D0 (~45%) drought indicating a more gradual recovery. By design, the HMM-DI model accounts 248 

for temporal dependence in the drought states explicitly. 249 

The importance of the time dependence built in HMM-DI is even more relevant for larger window 250 

sizes (see Appendix 1). Fig. 3b shows a comparison of 3-month HMM-DI and SPI values. The 251 
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cumulative precipitation for the 3-month window is shown as a solid line. HMM-DI classifies January 252 

1987 as a D1 drought (~55%) and D0 drought (~45%), whereas SPI classifies the same month as D1 253 

category drought.  When the precipitation deficit increases in February 1987, HMM-DI classifies it as 254 

a D2 category drought (~ 80%) and D3 drought (~20%) whereas SPI shows a sudden transition from 255 

D1 to D4 drought. In the following months when the precipitation deficit decreases, HMM-DI is able 256 

to capture the gradual transition of drought states. For example, a small increase of precipitation in 257 

July 1987 causes SPI to change drought classification from D1 to D0 category drought. HMM-DI, on 258 

the other hand, classifies July 1987 as a D1 category drought (~90%) but also shows small signs of 259 

recovery to D0 category drought (~10%).  With increasing window sizes of 6 and 12 months in Figs. 260 

3c and 3d, respectively, the temporal dependence in the accumulated time series and the drought 261 

states also increases. The smoother transitions are reflected in the HMM-DI results. 262 

The HMM-DI was next applied to streamflow data. The transformed streamflow data at the 36 USGS 263 

unregulated stations in the study area (Fig. 1) were used to compute the HMM-DI and the results 264 

were compared with the standardized streamflow index (SSI). As an example, Fig. 4a compares 265 

1-month HMM-DI with SSI values at USGS station 3275000 at Whitewater River Alpine, IN for a 266 

5-year block of 1985-89.   Streamflow values at the station during this time period are plotted as a 267 

line plot in the same figure. The stream gauge is located at a distance less than 10 kilometer from the 268 

COOP station (120132) used in the foregoing analysis. Streamflow at a gauging site is influenced by 269 

many factors including rainfall over the entire contributing area. As found in previous studies (Kao & 270 

Govindaraju 2010), the cross-correlation between precipitation and streamflow at these stations was 271 

significant to suggest close mapping of temporal dependencies in drought states. Hence, a comparison 272 

of drought states observed at  COOP station (120132) and USGS station (3275000) is provided here. 273 

This USGS streamflow gauging station is characterized by high spring flows and low fall flows. The 274 

streamflow during January 1988 was very low compared to the long-term January mean flow. In Fig. 275 

4a, HMM-DI estimates a D3 category drought (probability ~80%) during January 1988 and with a 276 
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smaller probability (~20%) of a D2 category drought. The SSI estimates the drought to be of D1 277 

category. Comparison of HMM-DI at the USGS station and at nearby COOP station shows that 278 

during August- November 1987 the COOP station experienced a dry spell, resulting in meteorological 279 

drought of D1-D3 category (Fig. 3a). This rainfall deficit likely had an impact on the streamflow, thus 280 

resulting in extended and severe hydrologic drought between November 1987 to July 1988. 281 

For window sizes greater than 1-month, cumulative streamflow data were used and then transformed 282 

to represent deviations from the mean. This transformed data was then used to compute SSI and 283 

HMM-DI values. For a 3 month time window, the HMM-DI classifies February-April months in 1988 284 

as D1 category drought (Fig. 4b) that can be attributed to longer memory in the data coupled with the 285 

time dependence built in the model. Figs. 4c and 4d show the HMM-DI and SSI comparisons at the 286 

selected USGS station for time windows 6 and 12 months respectively. As expected, the streamflow 287 

data are smoother, suggesting gradual transitions in drought states that are better reflected in the 288 

higher granularity provided by the HMM-DI. 289 

4.2 Comparing HMM-DI and SPI Statistics 290 

From the analysis of past drought records, it is expected that the number of extreme (D4, D3) drought 291 

events would be smaller for larger window sizes, and that the duration of a drought increases with 292 

window size. Since SPI classification is based on predefined thresholds, the number of drought events 293 

and their durations is of the same order irrespective of window size. This is evident in Fig. 5a, where 294 

boxplots of average duration of D2 category droughts are compared for various window sizes for all 295 

75 precipitation COOP stations. While the average duration of D2 category drought is of the same 296 

order irrespective of window sizes for SPI, the average duration increases with increase in window 297 

size for HMM-DI. Similarly, Fig. 5b shows the boxplot of the number of D2 category drought events 298 

versus window size. For SPI, the numbers of D2 category drought events for window sizes 3 – 12 299 

months are approximately the same. HMM-DI on the other hand shows a stronger trend of number of 300 

events decreasing with increase in window size. Figure 5c compares relative frequency of D2 301 
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category droughts for different window sizes for all the 75 precipitation COOP stations using 302 

boxplots. Because of the specification of thresholds used in SPI as in Table 1, the relative frequency 303 

for a given drought category is preordained to be the same for different window sizes. In Figure 5c, 304 

the relative frequency of occurrences of D2 droughts for different window sizes for all the 75 COOP 305 

stations is constant (~4%) according to SPI. However, the HMM-DI does show an increase in the 306 

relative frequency of D2 droughts with increasing window size. The HMM-DI statistics are likely to 307 

be sensitive to the strategy adopted for counting the numbers and durations of droughts. However, the 308 

qualitative behavior of HMM-DI in revealing the trends as shown in Fig. 5 is consistent. Similar 309 

trends were observed for other drought categories, but only the results obtained for D2 category are 310 

described here for brevity. 311 

4.3 Comparison of emission distributions over climate divisions at different time scales 312 

Emission distributions reflect the nature of droughts over a region as revealed by the data. As an 313 

example, emission distributions of drought states (D0-D4) for 1-month time window are shown in 314 

Fig. 6a for rainfall data that were aggregated over climatic divisions 1 and 9 (see Fig. 6). These two 315 

divisions have the greatest geographical separation. The probability density functions (pdf) for the 316 

entire data was determined by a non-parametric kernel density estimation method (Bowman & 317 

Azzalini 1997) and is shown as a thick black line for the two climatic divisions in Fig. 6a. While both 318 

these pdfs are positively skewed, the pdf for climatic division 1 has a steeper rising limb with more 319 

probability mass in the range corresponding to droughts thereby indicating a higher propensity for 320 

droughts in this division. 321 

Further, apart from D2 category, the emission distributions for the droughts classes are more peaked 322 

and less diffuse (smaller variance) in climatic division 9. Thus, droughts in this division are classified 323 

with higher probabilities, and there would be less uncertainty in the determination of drought category 324 

for 1-month precipitation data. The proposed HMM-DI utilizes information from the emission 325 
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distributions contained in the precipitation data. However, this information is not engaged in drought 326 

classification by HMM-DI with fixed emission distributions (Mallya et al. 2010). 327 

The emission distributions of the drought states (D0-D4) for 3, 6 and 12 months time windows (Fig. 328 

6b - 6c) are compared between climate divisions 1 and 9. As in Fig. 6a for a 1-month drought, Fig. 6b 329 

shows that pdfs are consistently negatively skewed with a steeper rising limb for climatic division 1 330 

than for division 9. In contrast to Fig. 6a, the emission distributions for larger time windows and for 331 

the various drought categories are more peaked with smaller variances for climatic division 1. 332 

Moreover, for 3 and 12-month drought windows (Fig. 6b and 6d), the emission distributions for 333 

moderate drought categories D1 and D2 are similar for these two regions despite their geographical 334 

separation – suggesting that probability of droughts in these categories (D1 and D2) tend to be similar 335 

in both divisions 1 and 9. Similarly, for 6-month drought windows (Fig. 6c), the emission 336 

distributions for D1, D3 and D4 categories are similar when compared between divisions 1 and 9. The 337 

emission distributions are thus useful for analyzing the nature of droughts over a region. As the time 338 

scale of a drought increases, the emission distributions for all drought categories tend to have smaller 339 

peaks and the variances increase. 340 

4.4 Emission distributions for streamflow 341 

Emission distributions of drought states (D0-D4) for 1, 3, 6 and 12 months are shown in Fig. 7 for 342 

streamflow data at USGS station 3275000 at Whitewater River Alpine, IN. Similar to the foregoing 343 

analysis, the probability density function (pdf) for the streamflow series was determined by a non-344 

parametric kernel density estimation method, shown as a black thick line. While pdfs for 1, 3 and 6 345 

months time window (Fig. 7a-7c) are positively skewed with steep rising limb, the pdf for 12-months 346 

time window shows a bi-modal distribution at this station. Further, the probability mass for these pdfs 347 

is higher in the region corresponding to droughts, again indicating a higher drought propensity 348 

following the trend in precipitation. For 1-month time window (Fig. 7a), the emission distribution for 349 

D0 category drought has the highest peak and also a small variance. This indicates that hydrologic 350 
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droughts at this station are likely to be classified in D0 category with higher probabilities and with 351 

less uncertainty. For larger time windows of 3, 6, and 12 months, the emission distributions for severe 352 

category droughts (D2 and D3; Fig. 7b-7d) have higher peaks suggesting that severe droughts are 353 

more likely at longer time scales at this station. Because streamflows represent aggregated response 354 

from a contributing watershed, a direct comparison over different stations is not meaningful. With 355 

Fig. 7, we demonstrate the role of emission distributions at a location, but these distributions are 356 

reflective of hydrologic processes over the corresponding watershed. From Figs. 6 and 7, emission 357 

distributions are shown to be useful tools in reflecting the nature of droughts at a location. Given that 358 

data are accumulated over a given time window for HMM-DI computations, it is not proper to 359 

compare emission distributions for different time windows as they are not normalized with respect to 360 

each other. This aspect is also reflected in the horizontal axis scale in Figs. 6a-d where the magnitudes 361 

of the deviations increase with increasing time windows. 362 

 363 

5. Model and data limitations 364 

The proposed HMM-DI model  , ,A   requires parameters of the emission distributions, 365 

elements of the transition matrix
 
and the initial distribution of states. Therefore, if one were to choose 366 

the Drought Monitor classification scheme that involves 11 states (D4-D0, N, and W0-W4), the total 367 

number of free parameters that need to be estimated would be equal to 142 (i.e. 11×2 + 11×10 + 10). 368 

There is no known analytical solution to this problem even if a finite observation sequence were 369 

given as a training data. The standard approach is to estimate the parameters using the Baum-Welch 370 

method (Rabiner 1989) such that the probability of observation, given the model, is maximized. The 371 

maximum likelihood estimate is a ‘point’ estimate. Similar to other iterative methods, the Baum-372 

Welch algorithm yields a local maximum in the likelihood surface. Consequently, a hundred random 373 

initial estimates were tried in search of stable results. The log-maximum likelihood functions for each 374 
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initialization were compared to test if indeed the global maxima was reached, and if the 375 

corresponding final parameter estimates were consistent. It was observed that the final parameter 376 

estimates for the mean and standard deviation of the emission distributions corresponding to each of 377 

the eleven components of the HMM-DI were not always consistent, likely due to high dimensionality 378 

of maximum likelihood surface resulting from the large set of parameters that need to be estimated 379 

from a finite observation sequence. If the number of components of the HMM model are reduced, 380 

then the dimensionality of the parameter space also reduces substantially, leading to more consistent 381 

estimates of parameters. For instance, when the numbers of components are reduced to three, the 382 

dimensionality of the parameter space is reduced from 142 to 14.  After numerous trials (see Mallya 383 

2011), it was found that stable results could be obtained for five components. Thus the accepted 384 

standard of 50 years of record length for hydrologic data may not be sufficient for stable results if all 385 

extreme drought states of US Drought Monitor are to be adopted for analysis.  386 

If a Gaussian mixture model (GMM) with 11 components is used instead of a HMM based model, the 387 

dimensionality of the parameter space is reduced from 142 to 22 because of the absence of the 388 

transition matrix for a GMM. Stable results were obtained for emission distribution parameters for 389 

this model (Mallya 2011). However, as noted during the exploratory analysis (see Appendix 1), the 390 

GMM is useful only for probabilistic drought classification at 1-month time scale. At time scales 391 

greater than one month, there is significant dependence between drought states of neighboring months 392 

as suggested by the mutual information statistics, and the GMM does not incorporate the dependence 393 

in the data. 394 

To obtain a solution for unique parameter estimates for the HMM model, while preserving the 395 

dependence in the drought states and also maintaining eleven components in order to be consistent 396 

with the Drought Monitor classification scheme, a modified transition matrix such that only 397 

bidiagonal elements are updated during each iteration, was explored. The probability of drought states 398 

changing by more than one category in either direction in a one month time frame is small. This is 399 
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especially true for longer duration droughts which have strong dependence built-in due to overlapping 400 

data. This smoother approach is suggested as an alternative when the data record length is small and 401 

data sufficiency is an issue. By adopting this approach, the dimensionality of the parameter space may 402 

be reduced from 143 to 55, resulting in an improved maximum likelihood surface. The experiment 403 

was performed for longer duration droughts (greater than 1-month). Stable parameter estimates were 404 

obtained for drought durations 9-months or greater, with eleven components in the HMM model. If 405 

the number of drought classes were reduced, stable results were obtained even for smaller duration 406 

droughts as shown in Mallya (2011). 407 

A note of caution is needed when missing data are replaced with their long-term mean - a standard 408 

practice in hydrology. If data are missing for several months, then artificially more mass is placed on 409 

one of the components of the emission distribution with zero mean and negligible standard deviation. 410 

This problem is particularly relevant when analyzing 1-month duration droughts. At longer time 411 

windows, the problem is muted because of overlap from neighboring months. 412 

 413 

6. Summary and conclusions 414 

A hidden Markov model was used to develop a new drought index. The parameters of the HMM were 415 

estimated using the method of maximum-likelihood. The developed drought index (HMM-DI) was 416 

applied to precipitation and streamflow data over Indiana and compared with the standardized indices 417 

(SPI and SSI). The HMM-DI explicitly incorporates temporal dependence in drought states, and 418 

consequently in cumulative rainfall amounts over all time windows. The emission distributions 419 

provide an opportunity for examining the distributional properties of droughts of different severities. 420 

The important conclusions from this study are as follows: 421 
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1. The HMM-DI provides a smooth transitioning of drought severity over time. This probabilistic 422 

classification provides a more informed measure of drought severity allowing for better mitigation 423 

measures.  424 

2. The average duration of a drought in any category increases with the size of the time window and 425 

is revealed clearly by HMM-DI. 426 

3. The HMM-DI shows that emission distributions for severe droughts tend to be similar across 427 

climatic divisions for longer duration droughts.  428 

Since drought indices are designed with a specific purpose depending on local and regional needs, 429 

there is no one true index. Rather than pre-defined thresholds, the HMM-DI allows the data to 430 

determine classification boundaries, and provides new insights into drought features. Comparisons 431 

with classifications from SPI or SSI were only for revealing differences in results between the 432 

models. 433 

The current study evaluated data at individual locations or aggregated data over climatic divisions. 434 

The graphical nature of this index could be exploited to provide a principled approach for searching 435 

physical mechanisms that trigger droughts. Given the generative nature of HMM-DI, it can be used 436 

for short-term drought forecasting, computation of future water deficits, and for estimating the 437 

probability of recovering from existing droughts.  438 

The HMM model can be developed in an online (parameters estimated adaptively) or offline (static 439 

parameters) mode. This paper presented results in an offline mode to enable comparisons with 440 

standardized indices. An online model would be useful for operational purposes and would go hand in 441 

hand with examination of generative properties of the model. These topics will form the basis for 442 

future studies. 443 

 444 
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Appendix 1 450 

A.1 Exploratory Analysis 451 

Exploratory analysis was carried out to check if the drought states adopted for computing SPI were 452 

independent in time as implicitly assumed in its formulation. Because there is an overlap in the data 453 

series adopted by SPI at drought time-windows greater than 1-month, it is important to check the 454 

extent of this temporal dependence. In this regard, the impetus for developing an HMM-type model is 455 

the use of latent variables (i.e. drought states) that allow for a natural way of incorporating 456 

uncertainty in classification of drought states. 457 

Mutual information is a measure of mutual dependence between random variables. This 458 

dimensionless quantity expresses the uncertainty measure of one random variable given the 459 

knowledge of the rest. High mutual information indicates reduced uncertainty; low mutual 460 

information indicates high uncertainty; and zero mutual information indicates that the two random 461 

variables are independent. Given two discrete random variables X and Y with a joint probability 462 

distribution , ( , )X YP x y , mutual information ( ; )I X Y is defined as follows (Shannon & Weaver 1949; 463 

Cover & Thomas 2001): 464 

,

( , )
( ; ) ( , ) log

( ) ( )

XY
XY

x y X Y

P x y
I X Y P x y

P x P y
  (A.1) 
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where ( ) ( , )X XY

y

P x P x y and ( ) ( , )Y XY

x

P y P x y  are the marginal distributions of X andY . 465 

Unlike linear correlation which assumes the joint distribution to be a bivariate Gaussian, equation 466 

(A.1) may be applied to any two discrete random variables. The mutual information statistic was 467 

computed using equation (A.1) for several combinations of drought categories (or bins) using SPI 468 

values at different time scales. For brevity, only results from precipitation station SI124181 are 469 

discussed here. Figure 8a shows the mutual information statistic for January month drought states for 470 

two bins. The two bins were selected by combining D4-D0 and N-W4 classes, respectively. A mutual 471 

information statistic value close to 1 indicates strong dependence in drought classification of one 472 

month (e.g., February) given the drought classification of another (e.g., January). Figure 8a shows 473 

that there is very little mutual information between two consecutive months at 1-month time scale. 474 

This suggests a lack of dependence in the drought states between any two consecutive months, and 475 

hence little advantage can be achieved by using HMM model for 1-month drought classification. A 476 

simpler Gaussian mixture model (GMM) may be used instead of HMM at this time scale for 477 

probabilistic drought classification. By using GMM, the number of model parameters that require 478 

estimation can be reduced significantly, thereby improving robustness of parameter estimates and 479 

reliability of model results. As expected, the mutual information between different months increases 480 

with the time window. For instance, Fig. 8a shows persistent dependence for 12 month time window, 481 

and drought states from February to May have high mutual information with the drought state in the 482 

January month. 483 

Figure 8b shows the mutual information statistics for January month drought state when D4-D2, D1-484 

D0 and N-W4 categories are combined to form three bins. We observe that with increase in number 485 

of bins, the details of mutual information statistic have improved, but again there is lack of mutual 486 

information between two consecutive months indicating independence for 1-month droughts, but the 487 

mutual information is strong for longer drought windows. This is substantiated further in Figure 8c 488 

that shows the mutual information statistics for January drought states with four bins: D4-D2, D1-D0, 489 
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N, and W0-W4. The results again suggest that there is lack of information between two consecutive 490 

months for 1-month droughts, but with increasing time window, there is a strong dependence in 491 

drought states. A detailed analysis of the mutual information results for different time windows and 492 

for different groupings is provided in Mallya (2011). Thus, a model that preserves temporal 493 

dependence is needed for proper characterization of droughts of durations greater than one month. 494 

This was achieved using hidden Markov models in this study.  495 
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List of Figures 568 

Figure Figure caption 

1 Map showing the study area with the location of COOP raingauges and 

USGS unregulated stations. 

2 Graphical representation of HMM model. Here tx refers to the observed 

hydrologic time series, while tz refers to the hidden drought state. 

3 Graph showing HMM-DI and SPI drought classification for a 1,3,6 and 12-

month(s) window at Alpine 2 NE, IN (120132) station for a 5-year block 

1985-89. The line plot corresponds to the cumulative precipitation total at the 

location used for computing the results based on the window size. 

4 Graph showing HMM-DI and SSI drought classification for a 1,3,6 and 12-

month(s) window at Whitewater River at Alpine, IN (3275000) station for a 

5-year block 1985-89. The line plot corresponds to the cumulative 

streamflow total at the location used for computing the results based on the 

window size. 

5a Boxplot comparing the average duration of precipitation droughts in 

month(s) versus window size for drought category D2. SI3 and HMM3 

correspond to results from standardized index and HMM-DI for a 3 month 

window. The boxplot shows the variability over all 75 COOP stations over 

Indiana from Fig. 1. 

5b Boxplot comparing number of precipitation drought events versus window 

size for drought category D2 given 100 months of data. SI3 and HMM3 

correspond to results from standardized index and HMM-DI for a 3 month 

window. The boxplot shows the variability over all 75 COOP stations over 

Indiana from Fig. 1. 

5c Boxplot comparing relative frequency of occurrence of D2 precipitation 

droughts versus window size. SI3 and HMM3 correspond to results from 

standardized index and HMM-DI for a 3 month window. The boxplot shows 

the variability over all 75 COOP stations over Indiana from Fig. 1. 

6 Plot of emission distributions for all drought states (D0-D4) estimated for 

climate divisions 1 and 9. The emission distributions correspond to 1, 3, 6 
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and 12- month(s) time window. The thick black line represents the 

probability density function (pdf) of the cumulative precipitation in that 

window. 

7 Plot of emission distributions for all drought states (D0-D4) estimated at 

Whitewater River at Alpine,IN (3275000) USGS streamflow station. The 

emission distributions correspond to 1, 3, 6 and 12- month(s) time window. 

The thick black line represents the probability density function (pdf) of the 

cumulative streamflow in that window. 

8a Mutual information statistics for January month SPI at different time scales 

(1, 3, 6 and 12 months) using two bins – D4-D0 and N-W4. 

8b Mutual information statistics for January month SPI at different time scales 

(1, 3, 6, and 12 months) using three bins – D4-D2, D1-D0, and N-W4. 

8c Mutual information statistics for January month SPI at different time scales 

(1, 3, 6, and 12 months) using four bins – D4-D2, D1-D0, N, and W0-W4. 
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Tables: 570 

Table 1: US Drought Monitor classification scheme 571 

Category Description SPI Range 

D0 Abnormally Dry -0.5 to -0.7 

D1 Moderate Drought -0.8 to -1.2 

D2 Severe Drought -1.3 to -1.5 

D3 Extreme Drought -1.6 to -1.9 

D4 Exceptional Drought -2.0 or less 

 572 

  573 
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Figures: 574 

 575 

Figure 1: Map showing the study area with the location of COOP raingauges and USGS unregulated 576 

stations. 577 

 578 

 579 

Figure 2: Graphical representation of HMM Model. Here tx refers to the observed hydrologic time 580 

series, while tz refers to the hidden drought state. 581 
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 586 

(c) 587 

 588 

(d) 589 

Figure 3: Graph showing HMM-DI and SPI drought classification for a 1,3,6 and 12-month(s) 590 

window at Alpine 2 NE station for a 5-year block 1985-89. The line plot corresponds to the 591 

cumulative precipitation total at the location used for computing the results based on the window size.  592 
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 597 

(c) 598 

 599 

(d) 600 

Figure 4: Graph showing HMM-DI and SSI drought classification for a 1,3,6 and 12-month(s) 601 

window at Whitewater River at Alpine,IN (3275000) station for a 5-year block 1985-89. The line plot 602 

corresponds to the cumulative streamflow total at the location used for computing the results based on 603 

the window size. 604 
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 605 

( a ) 606 

Figure 5(a): Boxplot comparing the average duration of precipitation droughts in month(s) versus 607 

window size for drought category D2. SI3 and HMM3 correspond to results from standardized index 608 

and HMM-DI for a 3 month window. The boxplot shows the variability over all 75 COOP stations 609 

over Indiana from Fig. 1. 610 
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 612 

(b) 613 

Figure 5(b): Boxplot comparing number of precipitation drought events versus window size for 614 

drought category D2 given 100 months of data. SI3 and HMM3 correspond to results from 615 

standardized index and HMM-DI for a 3 month window. The boxplot shows the variability over all 616 

75 COOP stations over Indiana from Fig. 1. 617 
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 619 

( c ) 620 

Figure 5(c): Boxplot comparing relative frequency of occurrence of D2 precipitation droughts versus 621 

window size. SI3 and HMM3 correspond to results from standardized index and HMM-DI for a 3 622 

month window. The boxplot shows the variability over all 75 COOP stations over Indiana from Fig. 623 

1. 624 
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 630 

(d) 631 

Figure 6: Plot of emission distributions for all drought states (D0-D4) estimated for climate divisions 632 
1 and 9. The emission distributions correspond to 1, 3, 6 and 12 months time window. The thick black 633 
line represents the probability density function (pdf) of the cumulative precipitation in that window.  634 
 635 
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 642 

(d) 643 

Figure 7: Plot of emission distributions for all drought states (D0-D4) estimated at Whitewater River 644 
at Alpine,IN (3275000) USGS streamflow station. The emission distributions correspond to 1, 3, 6 645 
and 12 month(s) time window. The thick black line represents the probability density function (pdf) 646 
of the cumulative streamflow in that window. 647 

 

Figure 8a: Mutual information statistics for January month SPI at different time scales (1, 3, 6 and 12 

months) using two bins – D4-D0 and N-W4. 
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Figure 8b: Mutual information statistics for January month SPI at different time scales (1, 3, 6, and 

12 months) using three bins – D4-D2, D1-D0, and N-W4. 

 

Figure 8c: Mutual information statistics for January month SPI at different time scales (1, 3, 6, and 

12 months) using four bins – D4-D2, D1-D0, N, and W0-W4. 
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