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ABSTRACT 12 

Drought severity is commonly reported using drought classes obtained by assigning pre-defined 13 

thresholds on drought indices. Current drought classification methods ignore modeling uncertainties 14 

and provide discrete drought classification. However, the users of drought classification are often 15 

interested in knowing inherent uncertainties in classification so that they can make informed 16 

decisions. Recent studies have used hidden Markov models (HMM) for quantifying uncertainties in 17 

drought classification. The HMM method conceptualises drought classes as distinct hydrological 18 

states that are not observed (hidden) but affect observed hydrological variables. The number of 19 

drought classes or hidden states in the model is pre-specified, which can sometimes result in model 20 

over-specification problem. This study proposes an alternate method for probabilistic drought 21 

classification where the number of states in the model is determined by the data. The proposed 22 

method adapts standard precipitation index (SPI) methodology of drought classification by 23 

employing gamma mixture model (Gamma-MM) in a Bayesian framework. The method alleviates 24 

the problem of choosing a suitable distribution for fitting data in SPI analysis, quantifies modeling 25 

uncertainties, and propagates them for probabilistic drought classification. The method is tested on 26 

rainfall data over India. Comparison of the results with standard SPI show important differences 27 

particularly when SPI assumptions on data distribution are violated. Further, the new method is 28 

simpler and more parsimonious than HMM based drought classification method and can be a viable 29 

alternative for probabilistic drought classification.  30 

1. Introduction 31 
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Drought classification schemes classify a drought based on its severity or intensity. Water resources 32 

planners rely on drought classification to decide drought mitigation strategies and hence weather 33 

agencies throughout the world routinely issue drought classification bulletins. For example, the US 34 

Drought Monitor releases a weekly update of drought status in U.S.A. by classifying droughts into 35 

five classes - D0 to D4 with the latter representing exceptional drought. India Meteorological 36 

Department (IMD) issues drought bulletins classifying droughts into three categories, namely, mild, 37 

moderate, and severe. 38 

The most common quantitative drought classification schemes work in two steps – first, by defining 39 

a drought index using hydro-meteorological observations and next, by categorizing droughts based 40 

on pre-defined thresholds on the index value. Examples include IMD classification that uses 41 

departure of rainfall from its long period average as a drought index, and US Drought Monitor 42 

classification that, along with other indices, uses Standardized Precipitation Index (SPI) as a 43 

drought index. Mallya et al. (2012) proposed an alternative method that does not require pre-44 

specification of thresholds. Their method provides a probabilistic drought classification by learning 45 

thresholds from the data. Both the approaches have drawbacks arising either from the limitations of 46 

the drought index or shortcomings in the procedure for defining thresholds. The following 47 

paragraphs briefly describe some of those limitations that we have attempted to address in this 48 

work. 49 

Drought classification schemes employ drought indices that measure degree of departure of hydro-50 

meteorological variables, such as precipitation and streamflow, from their long-term averages. 51 

Drought indices have been used for identifying droughts and their triggers (Steinemann, 2003), 52 

assessing drought status (Kao & Govindaraju, 2010), forecasting droughts (AghaKouchak, 2014), 53 

performing drought risk analysis (Hayes et al., 2004) and studying relationship of droughts with 54 

local-scale regional hydrological variables like water quality (Sprague, 2005) and large-scale 55 

climate patterns like El Niño-Southern Oscillation (Cole & Cook, 1998; Liu & Juárez, 2001; Ryu et 56 

al., 2010). Among several drought indices proposed in the literature (Dai, 2011; Heim, 2002; 57 

Mishra & Singh, 2010), the Standardized Precipitation Index (SPI; McKee et al., 1993) is very 58 
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popular because of its computational simplicity and versatility in comparing different hydro-59 

meteorological variables at different time scales. In SPI, historical observations are used to compute 60 

the probability distribution of the monthly and seasonal (4-months, 6-months, and 12-months) 61 

precipitation totals. The fitted probability distributions are then normalized using the standard 62 

inverse Gaussian function to calculate SPI values. A negative value of SPI indicates precipitation 63 

less than the median rainfall, and the magnitude of departure from zero represents the severity of a 64 

drought based on which drought classes are defined. As many drought classification schemes in the 65 

literature use SPI, they inherit its weaknesses. 66 

Standard SPI based drought classification schemes ignore uncertainties arising from data errors, 67 

model assumptions, and parameter estimations providing discrete classification. Thus, the users are 68 

not aware of inherent uncertainties in drought classification often required for making informed 69 

decisions. Further, in the context of SPI there is an ongoing debate on the selection of the 70 

parametric distribution for fitting data. McKee et al. (1995) in their original paper on SPI 71 

recommends gamma distribution. Lloyd-Huges and Saunders (2002) found gamma distribution to 72 

be an appropriate model for Europe. Guttman (1999) suggested Pearson-III distribution as the best 73 

universal model for SPI because it provides more flexibility than the gamma distribution. Rossi and 74 

Cancelliere (2003) found normal, lognormal, and gamma distributions to be suitable for different 75 

datasets in their study. Loukas and Vasiliades (2004) investigated different theoretical distributions 76 

using Kolmogorov-Smirnov (K-S) test and Chi-squared test and found Extreme Value-I distribution 77 

to be most suitable for studying drought over Thessaly, Greece. Mishra et al. (2007) argues that 78 

different distributions may be appropriate for different drought durations (window size), and 79 

recommends K-S test for choosing an appropriate distribution. Bonaccorso et al. (2013) used 80 

Lilliefors test to choose among normal, lognormal, and gamma distributions while Russo et al. 81 

(2013) used the three parameter generalized extreme value (GEV) distribution for SPI analysis. 82 

Thus there is no consensus on the choice of distribution for SPI analysis.  83 

Mallya et al. (2012) uses hidden Markov model (HMM) for drought classification by 84 

conceptualizing hidden states in the model to represent drought states. Their model avoided the 85 
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need for specifying thresholds for drought classification and provided probabilistic drought 86 

classification by accounting model uncertainties; however, the number of hidden states (drought 87 

classes) is pre-specified. To facilitate comparison of HMM drought classification with standard 88 

methods they specified 11 hidden states. Since the number of states is imposed on the model, it is 89 

possible that for datasets with short record length the model suffers from over-specification 90 

problem, i.e. the model structure is more complicated than supported by the dataset. Specifically, in 91 

the HMM context, over-specification means that the number of specified hidden states are more 92 

than that needed to model the data. Over-specification can result in parameter identification 93 

problem leading to unreliable results. 94 

The main objective of this paper is to propose an alternate method for probabilistic drought 95 

classification. The proposed method adapts SPI drought classification methodology by employing 96 

gamma mixture model (Gamma-MM) in a Bayesian framework. The method alleviates the problem 97 

of selecting suitable distribution for SPI analysis, quantifies modeling uncertainties, and propagates 98 

them for probabilistic drought classification. Further, it avoids over-specification problem by using 99 

a Bayesian approach for optimally selecting the number of hidden states in the model.  100 

The remainder of the paper is structured as follows. First, the study area and data used are briefly 101 

described. Next, the proposed methodology for drought classification is described, and the results 102 

obtained are presented and discussed. Finally, summary and conclusions drawn from the study are 103 

presented in the last section. 104 

2. Study area and data used 105 

The study area, India, receives 80% of its annual precipitation during four-month long southwest 106 

summer monsoon (Bagla, 2006; Parathasarathy et al., 1994). The monsoon precipitation makes 107 

landfall around the 1st week of June near Kerala in southern India, and moves northeast towards the 108 

Himalayas. By the first week of July, almost the entire country typically receives some precipitation 109 

that continues until the end of September (Burroughs, 1999). Though the Indian monsoon is 110 

believed to be one of the most stable monsoon systems (Houghton et al., 2001), it has large inter- 111 
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and intra-seasonal variability that can sometimes result in weak monsoon or droughts over India 112 

(Krishnamurthy & Shukla, 2000). Since, the country's gross domestic product (GDP), particularly 113 

food and power production, is closely linked to monsoon rains, various strategies have been 114 

developed over the years to mitigate the effects of droughts (e.g. Drought Prone Areas Programme 115 

(DPAP), and Desert Development Programme (DDP)). Effective implementation of these strategies 116 

requires real-time reliable classification of droughts.  117 

Daily rainfall data at a spatial resolution of 1° for both latitude and longitude were obtained from 118 

India Meteorological Department (IMD) and are based on a total 1803 stations distributed over 119 

India that have at least 90% availability for the period 1901-2004 (Rajeevan, 2006). The gridded 120 

data consisting of 357 grid points have been obtained by interpolating raingage data. The IMD 121 

datasets are standard datasets widely used in monsoon-related studies over India (Goswami et al., 122 

2006). Figure 1 shows the study area along with the grid locations for which rainfall data were 123 

available.  124 

3. Methodology 125 

The proposed methodology is an adaptation of the standard SPI methodology. It classifies droughts 126 

as follows:  127 

1. Decide a drought duration (time-window) and estimate cumulative rainfall during that 128 

period. For example, to estimate drought during a monsoon season, estimate cumulative 129 

rainfall during four months of the monsoon season (JJAS) for each year. This will yield an 130 

annual time-series of cumulative rainfall. 131 

2. Fit a gamma mixture model (Gamma-MM) to the annual series using the procedure 132 

described in the next section. This will yield posterior distribution of model parameters. 133 

3. For a given rainfall event, determine cumulative distribution function (CDF) and its 134 

credible interval using the fitted Gamma-MM. Unlike SPI, the CDF from Gamma-MM is a 135 

random variable with a distribution uniquely determined by the parameters of the fitted 136 

model.  137 
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4. Using pre-specified thresholds on the CDF, determine the drought class. As the CDF for a 138 

given rainfall event is a distribution, it may spread over more than one drought class. 139 

Estimate the mass of the CDF distribution in each drought class which will be the 140 

probability of the given rainfall event to be in that drought class. 141 

Since the posterior distribution of the Gamma-MM parameters does not have a closed form, the 142 

integration for estimating mass of CDF in each drought class is performed numerically.  143 

Threshold on the CDF function should be decided based on the application of the drought 144 

classification scheme. To draw parallels with the US Drought Monitor, we have used the same 145 

thresholds as used by them for SPI drought classification (Table 1). 146 

4. Gamma Mixture Model (Gamma-MM) 147 

As discussed in the Introduction section, there is an ongoing debate on the choice of a suitable 148 

distribution for fitting data in SPI analysis. We address this problem by using the gamma mixture 149 

model (Gamma-MM). Given sufficient number of components in the mixture, the Gamma-MM is 150 

proven to provide arbitrarily close approximation to any general continuous distribution in the range 151 

(0,∞) (see, DeVore & Lorentz, 1993). 152 

The use of Gamma-MM is not new in hydrology. To model data with multiple modes and different 153 

types of skewness, (Evin et al., 2011) proposed the use of Gamma-MM for strictly positive 154 

hydrological data. In the assessment of hydrological droughts for Yellow River in China, (Shiau et 155 

al., 2007) first fitted mixtures of exponential and gamma distributions to drought duration and 156 

drought severity, respectively, and then used the copula method to construct a bivariate drought 157 

distribution. In the following we provide a brief description of the Gamma-MM. The readers are 158 

referred to Wiper et al. (2001) and Richardson & Green (1997) for details on mixture models. 159 

Let the cumulative rainfall at time t  be denoted by ,tx  1, ,t N { tx R and 
1[ , , ] }T

Nx xX . 160 

If the total number of components of Gamma-MM, M , is known a priori, then the weighted sum of 161 

M mixtures of gamma is given by the equation 162 
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The posterior probability of the model parameters and latent variable are obtained by applying 178 

Bayes’ Rule as 179 

( | ) ( | ) ( )P P Pλ X X λ λ          (4)
 

180 

where the parameter set λ  includes the latent variable as well. The likelihood function given the 181 

latent variable is 182 
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Following Wiper et al. (2001) the prior distribution over the model parameter is given as 184 
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189 

where Dir, Exp, and GI represent Dirichlet, Exponential, and Inverted Gamma distributions 190 

respectively, and  C  is a normalizing constant. The prior distribution is made non-informative 191 

by assigning following values to the hyper-parameters. 192 

1;  0.01;  1 for 1, ,i i i i i M        . 193 

The posterior distribution  P λ|X does not have a closed form and has to be estimated by either 194 

deterministic approximation (variational Bayes methods) or stochastic approximation (MCMC; 195 

Markov chain Monte Carlo methods). In this study the posterior distribution is estimated using 196 

stochastic approximation by sampling posterior distribution with Gibbs sampler, an MCMC 197 

algorithm (Geman & Geman, 1984), the details of which are given in the appendix. 198 

In the above formulation of Gamma-MM, we have assumed that the number of mixture 199 

components, M , is known. However, in a general context, M is not known and should be 200 

estimated from data. One approach for estimating M is to consider it as a model parameter, assign 201 

prior distribution to it and estimate posterior distribution by MCMC method. Since changing M  202 

will result in a different model structure, usual MCMC algorithms such as Gibbs sampler cannot be 203 
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applied. Instead reversible jump MCMC (RJMCMC; (Green, 1995) and (Richardson & Green, 204 

1997)) may be used. In this study we implemented RJMCMC for Gamma-MM as described by 205 

Richardson & Green (1997) and Wiper et al. (2001). The results suggested that RJMCMC 206 

algorithm requires significantly higher number of iterations for convergence compared to a model 207 

where M is specified. We found that if we start with a model having sufficiently large number of 208 

components, M , the Bayesian algorithm automatically prunes the components that are not relevant 209 

for modeling by making the mixing ratio  w very small, thereby determining optimum number of 210 

components. We recommend the latter approach for hydrological applications where the number of 211 

components is usually limited 2 or 3.  212 

In the Bayesian framework, mixture models have identifiability problem i.e., a M  component 213 

mixture model will have a total of !M  equivalent solutions. The problem can be avoided by 214 

introducing asymmetricity in the likelihood function. For example, in the context of Gamma-MM, 215 

Wiper et al. (2001) recommended the following restriction on the means of the mixture 216 

components, 1 2 .M      However, for finding a good density model, as required in the 217 

present application, the problem of identifiability is not relevant because any of the equivalent 218 

solutions is as good as another (Bishop, 2006). 219 

5. Results and Discussion 220 

The proposed approach is applied to study 4-month and 12-month droughts that correspond to a 221 

monsoon season (June to September) and water-year (June to May) drought in India, respectively. 222 

Following the procedure described in the Methodology section, first, an annual time-series of 223 

cumulative rainfall during the monsoon season and water-year are computed. Next, the droughts are 224 

classified applying the traditional SPI and the proposed approach. Both the approaches assume that 225 

cumulative time-series are stationary, and consist of independent and identically distributed 226 

samples. In the following paragraphs, results are presented for three selected grid-points (shown in 227 

Fig. 1) that reveal similarities and differences between the two drought classification approaches. 228 

As more than 80% of the rainfall in the study area is received during the monsoon season, the 229 
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water-year and monsoon droughts exhibit similar characteristics. Hence, for brevity, the results are 230 

presented only at the three selected grid-points for the water-year droughts, and at only one grid 231 

point for the monsoon season. Results and discussion comparing the proposed probabilistic SPI 232 

with HMM-based probabilistic drought classification at one grid point in the study area are also 233 

included below.  234 

a. Grid 125 (21°30' N and 82°30' E): The grid point is located in the state of Chhattisgarh and 235 

belongs to the core-monsoon region of India. Figure 2 shows the empirical cumulative distribution 236 

function (CDF) obtained by using Weibull plotting position formula (Chow et al., 1988) along with 237 

CDFs of fitted gamma distribution (fitted using maximum likelihood approach) and gamma mixture 238 

model (Gamma-MM) for water-year rainfall. The CDF of Gamma-MM is closer to empirical CDF 239 

than the CDF of gamma distribution, particularly for the smaller rainfall values [F(X)<0.25], which 240 

are critical for drought classification. The Gamma-MM owes its better fit to the large number of 241 

tuning parameters (3M-1, where M is number of components in Gamma-MM) compared to two 242 

parameter gamma distribution.  243 

Increasing the number of mixture components (M) ensures that the model provides better fit to the 244 

data. However, it may also result in over-fitting. The proposed approach addresses this problem by 245 

using a Bayesian framework that avoids overfitting by marginalizing over the model parameters 246 

instead of making point estimates. Figure 3 shows the mixing ratio of a 5-component Gamma-MM 247 

fitted to cumulative water-year rainfall at Grid 125. The model identifies that three of the five 248 

components have negligible contribution and are effectively pruned from the model. Thus, the 249 

Bayesian framework identifies optimal number of mixture components needed to fit the data.  250 

The Bayesian framework also allows quantification of model uncertainties and their propagation to 251 

model estimates. In the context of Gamma-MM, the posterior distribution of model parameters is 252 

estimated from which the CDF is obtained. Unlike maximum likelihood approach that yields a point 253 

estimate of CDF, the Bayesian approach treats CDF as a random variable and yields distribution of 254 

CDFs for a given value of rainfall. The grey shaded band in Fig. 2 represents 90% credible interval 255 
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(5th and 95th percentile). The width of the credible interval is not constant but varies with the 256 

magnitude of rainfall. It has a maximum value of 0.16 near the median rainfall (1260 mm), a 257 

plateau near the intersection of two components (~900 mm; Fig. 4), and a monotonic decreasing 258 

trend on either side of the median. 259 

The width of the credible interval is large even for smaller values of CDFs that decide drought 260 

classes in SPI methodology. In this study, we attempted to engage credible interval of CDF for 261 

drought classification. Figure 5(b) shows the drought classification using standard SPI method. The 262 

empirical CDF along with the fitted CDF and drought classification thresholds are shown in the 263 

figure. The SPI drought classification uses fixed thresholds, hence the boundaries separating two 264 

drought classes are vertical lines on the panel. The top panel of Fig. 5 shows probabilistic drought 265 

classification by using Gamma-MM. The classification uses the same thresholds on CDF as SPI but 266 

engages uncertainty in the estimate of CDF resulting in probabilistic drought classification. Unlike 267 

standard SPI, the demarcating boundaries in the probabilistic SPI are curves denoting varying 268 

classification probabilities. 269 

The probabilities associated with drought classification represent uncertainties in determining 270 

drought classes. For example, the D4 category drought represents drought conditions where non-271 

exceedance probability of the cumulative rainfall is less than 0.023 [F(X)<0.023; Table 1], i.e. 272 

during D4 drought the chance of rainfall being less than the observed rainfall is less than 2%. The 273 

probabilistic drought classification acknowledges that, given limited data and model assumptions, 274 

such a threshold cannot be determined uniquely but can be estimated probabilistically. The method 275 

honors model uncertainty and provides results in a format that could be useful for drought 276 

managers.  277 

 278 

Figure 6 shows historical drought classes at Grid 125 using standard SPI, probabilistic SPI, and 279 

HMM based drought classification (HMM-DI). The droughts classified by probabilistic SPI (Fig. 280 

6a) and standard SPI methods (Fig. 6c) are similar, however, the advantages of probabilistic 281 

classification are evident in some years. For example, in 1998, 1999 and 2000 the cumulative 282 
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rainfall values were 69 cm, 73 cm, and 66 cm, respectively. Considering that the difference in 283 

cumulative rainfall among these years is less than 3% of their standard deviation (30 cm), we would 284 

not have expected them to belong to two different drought classes as categorised by SPI (1998 and 285 

2000 in D4, and 1999 in D3). The probabilistic SPI classifies 1998, 1999 and 2000 to D3 class with 286 

probability 55%, 60% and 25%, and to D4 class with probabilities 40%, 5% and 75%, respectively 287 

(the remaining probabilities being given to other drought classes). The historical drought classes at 288 

Grid 125 using HMM-DI are shown in Figure 6b. Compared to the probabilistic SPI results (Fig. 289 

6a), drought classes obtained using HMM are more conservative. This is evident for the years 1920, 290 

1924, 1998 and 2000 where droughts are classified with higher probabilities, or in a more severe 291 

category by HMM-DI compared to drought classification using probabilistic SPI. An HMM with 11 292 

hidden states may suffer from an over-specification problem. 293 

Figure 7 shows the relative frequency of the rainfall during the monsoon months, JJAS, at Grid 125. 294 

As in the case of water-year rainfall (Fig. 4), the monsoon rainfall also exhibits two distinct modes 295 

that are captured by the 2-component Gamma-MM but missed by the gamma distribution. Figure 8 296 

shows the empirical CDF of the monsoon rainfall along with CDFs of the fitted gamma distribution, 297 

and Gamma-MM model with its 90% credible interval. The width of the credible interval is widest 298 

(0.17) near the median rainfall (1140 mm), a plateau at the intersection of two components of the 299 

Gamma-MM (~800 mm, Fig. 7) and a monotonic decreasing trend away from the median, similar in 300 

nature to Fig. 4. Figure 9 presents the demarcating boundaries for the drought classes determined by 301 

the two methods. As in the case of water-year droughts (Fig 5), the demarcating boundaries for 302 

probabilistic SPI are S-shaped curves. The classification of historical monsoon droughts by standard 303 

SPI and, probabilistic SPI are similar except for some subtle differences (Fig. 10). In 1901, 1902 304 

and 1924 the monsoon rainfall at Grid 125 were 90 cm, 85 cm and 88 cm, respectively. Standard 305 

SPI classifies 1901 in D0 class, but 1902 and 1924 in D1 class even though their differences from 306 

1901 rainfall are not significant (5cm and 2cm, respectively). Probabilistic SPI classifies all the 307 

three years in D0 and D1 classes with probabilities 60% & 39%, 19% & 81%, and 37% & 63%, 308 

respectively.  309 
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 310 

b. Grid 251 (26°30' N and 95°30' E): The grid is located in North-East India, which is among the 311 

highest rainfall receiving regions of the world. Figure 11 shows the relative frequency of the rainfall 312 

received during a water year. The data exhibits two distinct modes that are captured by the 2-313 

component Gamma-MM but completely missed by the gamma distribution. Figure 12 shows the 314 

empirical CDF of the cumulative rainfall along with CDFs of the fitted gamma distribution, and 315 

Gamma-MM model with its 90% credible interval. The credible interval is widest near the 316 

intersection of two components of the Gamma-MM (Fig. 7). Figure 13 presents the demarcating 317 

boundaries for the drought classes determined by the two methods. A notable feature in the figure is 318 

a relatively diffused boundary separating D0 category drought from the normal state in probabilistic 319 

SPI which can be attributed to a relatively wide credible interval in that range (2500 mm to 3500 320 

mm, Fig. 12). The drought classification of the historical data is given in Fig. 14. Compared to 321 

standard SPI, the probabilistic SPI is more conservative in assigning D4 category drought. For 322 

example, 1953, 1954 and 1955 are the lowest rainfall years in the record with cumulative rainfall of 323 

98 cm, 124 cm and 125 cm, respectively. Standard SPI classifies only 1953 in D4 class while 324 

probabilistic SPI classifies all the three years in D4 class with probabilities 99%, 74% and 71%, 325 

respectively.  326 

 327 

c. Grid 278 (28°30' N and 70°30' E): The grid belongs to the Thar Desert in western India where 328 

the annual rainfall is much smaller than rest of the country. Figure 15 shows the relative frequency 329 

of the cumulative rainfall during a water year along with PDFs of gamma distribution and Gamma-330 

MM. The Gamma-MM selects only one component and yields a distribution that is very similar to 331 

that of gamma distribution (Figs. 15 and 16). The 90% credible interval shows a peak near 100 cm 332 

which lies in the tail of the rainfall distribution and has implications on drought classification. 333 

Figure 17 illustrates drought classification by the standard SPI and probabilistic SPI. The two 334 

methods provide similar drought classification except for a few minor differences. The cumulative 335 

rainfall of 100 cm represents normal state according to standard SPI classification, however owing 336 

to wide credible interval, the rainfall is assigned to D0 drought category by probabilistic SPI, albeit 337 
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with a small probability (1.5%). The classifications of the historical droughts by the two methods 338 

are almost similar (Fig. 18). Thus, for the scenarios where data support the gamma distribution 339 

assumption of SPI, the results of Gamma-MM based probabilistic SPI and standard SPI are similar. 340 

6. Summary and Concluding Remarks 341 

1. A probabilistic drought classification method is proposed as an alternative to (i) 342 

deterministic classification by standard SPI, and (ii) probabilistic classification by HMM. 343 

2. The proposed method alleviates the problem of choosing a suitable distribution for SPI 344 

analysis by modeling the data with a mixture of gamma distributions. Given sufficient 345 

components in the mixture, the Gamma-MM can give arbitrarily close approximation to any 346 

general continuous distribution in the range (0, ) .  347 

3. The problem of overfitting the data is avoided by using Bayesian framework that determines 348 

optimum number of components needed by the model. 349 

4. The proposed method propagates model uncertainties to drought classification by providing 350 

probabilistic drought classes. 351 

5. The method was tested on rainfall data over India. Specifically, droughts during the water 352 

year (June–May) and the south-west monsoon season (JJAS) were studied in detail using the 353 

proposed method. The results suggest that drought classification by the proposed method is 354 

similar to standard SPI classification where data satisfies SPI assumptions. However, the 355 

results of the new method are markedly different and more intuitive than SPI results for 356 

situations where data violate SPI assumptions. The drought classification obtained using the 357 

proposed method were less conservative compared to the probabilistic classification by 358 

HMM with 11 hidden states as it avoids the problem of over-specification. 359 

The proposed Gamma-MM method for probabilistic drought classification has a slightly more 360 

involved algorithm than standard SPI, but the former quantifies uncertainty in drought 361 

classification, a critical input for hydrological decision-making (Pappenberger & Beven, 2006). 362 

Recent studies have highlighted the need of probabilistic analysis for characterizing droughts 363 
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(Mishra et al., 2009), forecasting droughts (Madadgar & Moradkhani, 2013 and AghaKouchak, 364 

2014), performing drought risk analysis (Hayes et al., 2004), determining drought recovery (Pan et 365 

al., 2013), and managing droughts (Song, 2011). The proposed approach, owing to its probabilistic 366 

framework and relatively simple algorithm compared to HMM-DI, can be a viable tool for these 367 

analyses.  368 

In the paper, the probabilistic SPI is applied to the rainfall data. However, the proposed method can 369 

be easily extended for classifying droughts using other hydro-meteorological variables such as 370 

streamflow, runoff, groundwater, and soil moisture for which SPI like indices have been proposed 371 

in the literature. Many of these hydro-meteorological variables have large measurement 372 

uncertainties, which are ignored in standard SPI type analysis, but can be easily engaged in the 373 

proposed method. Further, the method opens avenues for defining droughts for non-stationary 374 

hydrological records and characterizing droughts in real time and using online Bayesian updates.  375 

  376 
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Appendix: 486 

The Gibbs Sampling Algorithm  487 

The Gibbs sampling algorithm samples posterior distribution of the parameters by sequentially 488 

sampling from the conditional distribution of a parameter given all other parameters. The sampling 489 

starts with an initial value and proceeds as follow.  490 

1. Set iteration number 0j  , and parameters to their initial value 
       0 0 0 0

, , 
 

λ w μ ν . 491 

The initial value is obtained by randomly sampling from the prior distribution of the 492 

parameters.  493 

2. Sample from 
      ( 1) ( )| , , , Multinomial |

j jj j

t t tP 
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v w μX  This conditional distribution does not have 501 

a closed form. Hence samples are generated using Metropolis-Hasting algorithm. In the 502 

Metropolis-Hasting algorithm a sample is generated from a proposal distribution 503 
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where  
  1; 1

exp log log .
i i
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  506 

If the new sample iv  is rejected, the current value of iv  is retained. The above procedure is 507 

repeated to sample iv  for all components 1, , .i M  In this study the parameter of the 508 

proposal distribution, ,h  is set to 2. 509 

6. Set 1j j   and go to Step 2 until convergence. In this study, 15000 samples are 510 

generated after ignoring initial 500 samples (burn-in period). Trace plots of the samples are 511 

monitored for convergence.  512 

To keep the notations uncluttered, the iteration number is omitted from the parameters of the 513 

conditional distributions.  514 

 515 

List of Figures 516 

Figure Caption 

1 Map showing the study area along with the location of grids for which rainfall 

data were provided by IMD. 

2 Empirical CDF along with CDFs obtained by fitting gamma distribution 

(Gamma CDF) and gamma mixture model (Gamma-MM CDF) to the 

cumulative rainfall in a water-year at Grid 125. The grey band shows 5th and 

95th percentile of the Gamma-MM CDF and the green dotted line shows 

width of its credible interval. 

3 Mixing ratios of the components of a Bayesian Gamma-MM. Two 

components are identified to be significant for characterizing water-year 

drought at Grid 125. 

4 Relative frequency of the cumulative rainfall amounts in a water-year at Grid 

125, and probability density functions of the fitted gamma distribution 
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(Gamma PDF) and gamma mixture model (Gamma-MM PDF). The grey 

band shows 90% credible interval (5th and 95th percentile) of the Gamma-MM 

PDF. 

5 Drought classification using rainfall at Grid 125 by the probabilistic SPI (top 

panel) and standard SPI (bottom panel). The colored patches represent 

drought classes, the light horizontal lines denote thresholds on CDF specified 

by US Drought Monitor, and the solid curves represent empirical and fitted 

CDFs. 

6 Classification of historical droughts during a water-year at Grid 125 using 

probabilistic SPI, HMM-DI, and standard SPI approaches. The solid blue line 

represents cumulative rainfall during a water-year, a colored bar denotes 

drought classes and its length represents probability of drought state. 

7 Relative frequency of the cumulative rainfall amounts during the south-west 

summer monsoon months (JJAS) at Grid 125, and probability density 

functions of the fitted gamma distribution (Gamma PDF) and gamma mixture 

model (Gamma-MM PDF). The grey band shows 90% credible interval (5th 

and 95th percentile) of the Gamma-MM PDF. 

8 Empirical CDF along with CDFs obtained by fitting gamma distribution 

(Gamma CDF) and gamma mixture model (Gamma-MM CDF) to the 

cumulative rainfall during the south-west summer monsoon months (JJAS) at 

Grid 125. The grey band shows 5th and 95th percentile of the Gamma-MM 

CDF and the green dotted line shows width of its credible interval. 

9 Drought classification using rainfall during the south-west summer monsoon 

months (JJAS) at Grid 125 by the probabilistic SPI (top panel) and standard 

SPI (bottom panel). The colored patches represent drought classes, the light 

horizontal lines denote thresholds on CDF specified by US Drought Monitor, 

and the solid curves represent empirical and fitted CDFs. 
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10 Classification of historical droughts during the south-west summer monsoon 

months (JJAS) at Grid 125 using probabilistic and standard SPI approaches. 

The solid blue line represents cumulative rainfall during a water-year, a 

colored bar denotes drought classes and its length represents probability of 

drought state. 

11 Relative frequency of the cumulative rainfall amounts in a water-year at Grid 

251 in NE India, and probability density functions of the fitted gamma 

distribution (Gamma PDF) and gamma mixture model (Gamma-MM PDF). 

The grey band shows 90% credible interval (5th and 95th percentile) of the 

Gamma-MM PDF. 

12 Empirical CDF along with CDFs obtained by fitting gamma distribution 

(Gamma CDF) and gamma mixture model (Gamma-MM CDF) to the 

cumulative rainfall in a water-year at Grid 251 located in NE India. The grey 

band shows 5th and 95th percentile of the Gamma-MM CDF and the green 

dotted line shows width of its credible interval. 

13 Drought classification using rainfall at Grid 251 in NE India by the 

probabilistic SPI (top panel) and standard SPI (bottom panel). The colored 

patches represent drought classes, the light horizontal lines denote thresholds 

on CDF specified by US Drought Monitor, and the solid curves represent 

empirical and fitted CDFs. 

14 Classification of historical droughts during a water-year at Grid 251 in NE 

India using probabilistic and standard SPI approaches. The solid blue line 

represents cumulative rainfall during a water-year, a colored bar denotes 

drought classes and its length represents probability of drought state. 

15 Same as Fig. 7 but for Grid 278 in the Thar Desert of Western India. 

16 Same as Fig. 8 but for Grid 278 in the Thar Desert of Western India. 

17 Same as Fig. 9 but for Grid 278 in the Thar Desert of Western India. 



24 
 

18 Same as Fig. 10 but for Grid 278 in the Thar Desert of Western India. 
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Tables: 519 

Table 1: US Drought Monitor classification scheme. SPI ranges are prescribed for the inverse of 520 

the Normal distribution. Corresponding thresholds on CDF are given in the last column.  521 

Category Description SPI Range Threshold on CDF 

D0 Abnormally Dry -0.5 to -0.8 0.212 to 0.309 

D1 Moderate Drought -0.8 to -1.3 0.097 to 0.212 

D2 Severe Drought -1.3 to -1.6 0.055 to 0.097 

D3 Extreme Drought -1.6 to -1.9 0.023 to 0.055 

D4 Exceptional Drought -2.0 or less 0.023 or less 

 522 
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FIGURES 524 

 525 

Figure 1: Map showing the study area along with the location of grids for which rainfall data 526 

were provided by IMD.  527 

 528 
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Figure 2: Empirical CDF along with CDFs obtained by fitting gamma distribution (Gamma CDF) and gamma mixture model (Gamma-MM CDF) to 

the cumulative rainfall in a water-year at Grid 125. The grey band shows 5th and 95th percentile of the Gamma-MM CDF and the green dotted line 

shows width of its credible interval. 
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Figure 3: Mixing ratios of the components of a Bayesian Gamma-MM. Two components are 

identified to be significant for characterizing water-year drought at Grid 125. 
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Figure 4: Relative frequency of the cumulative rainfall amounts in a water-year at Grid 125, and probability density functions of the fitted gamma 

distribution (Gamma PDF) and gamma mixture model (Gamma-MM PDF). The grey band shows 90% credible interval (5th and 95th percentile) of 

the Gamma-MM PDF.   
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Figure 5: Drought classification using rainfall at Grid 125 by the probabilistic SPI (top panel) and standard SPI (bottom panel). The colored patches 

represent drought classes, the light horizontal lines denote thresholds on CDF specified by US Drought Monitor, and the solid curves represent 

empirical and fitted CDFs.   
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Figure 6: Classification of historical droughts during a water-year at Grid 125 using probabilistic SPI, HMM-DI, and standard SPI approaches. The 

solid blue line represents cumulative rainfall during a water-year, a colored bar denotes drought classes and its length represents probability of 

drought state.   
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Figure 7: Relative frequency of the cumulative rainfall amounts during the south-west summer monsoon months (JJAS) at Grid 125, and probability 

density functions of the fitted gamma distribution (Gamma PDF) and gamma mixture model (Gamma-MM PDF). The grey band shows 90% 

credible interval (5th and 95th percentile) of the Gamma-MM PDF. 
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Figure 8: Empirical CDF along with CDFs obtained by fitting gamma distribution (Gamma CDF) and gamma mixture model (Gamma-MM CDF) to 

the cumulative rainfall during the south-west summer monsoon months (JJAS) at Grid 125. The grey band shows 5th and 95th percentile of the 

Gamma-MM CDF and the green dotted line shows width of its credible interval.  
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Figure 9: Drought classification using rainfall during the south-west summer monsoon months (JJAS) at Grid 125 by the probabilistic SPI (top 

panel) and standard SPI (bottom panel). The colored patches represent drought classes, the light horizontal lines denote thresholds on CDF specified 

by US Drought Monitor, and the solid curves represent empirical and fitted CDFs.  
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Figure 10: Classification of historical droughts during the south-west summer monsoon months (JJAS) at Grid 125 using probabilistic and standard 

SPI approaches. The solid blue line represents cumulative rainfall during a water-year, a colored bar denotes drought classes and its length 

represents probability of drought state.  
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Figure 11: Relative frequency of the cumulative rainfall amounts in a water-year at Grid 251 in NE India, and probability density functions of the 

fitted gamma distribution (Gamma PDF) and gamma mixture model (Gamma-MM PDF). The grey band shows 90% credible interval (5th and 95th 

percentile) of the Gamma-MM PDF.  
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Figure 12: Empirical CDF along with CDFs obtained by fitting gamma distribution (Gamma CDF) and gamma mixture model (Gamma-MM CDF) 

to the cumulative rainfall in a water-year at Grid 251 located in NE India. The grey band shows 5th and 95th percentile of the Gamma-MM CDF and 

the green dotted line shows width of its credible interval.   

1000 2000 3000 4000 5000 6000 7000 8000 9000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X (Cumulative rainfall in mm)

F
(X

)

 

 

Empirical CDF

Gamma CDF

Gamma-MM CDF

5-95 %tile

Width of credible interval



38 
 

 

 Figure 13: Drought classification using rainfall at Grid 251 in NE India by the probabilistic SPI (top panel) and standard SPI (bottom panel). The 

colored patches represent drought classes, the light horizontal lines denote thresholds on CDF specified by US Drought Monitor, and the solid curves 

represent empirical and fitted CDFs.   

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

a. Probabilistic SPI (Gamma-MM)

 

 

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

C
D

F

D4 D3 D2 D1 D0 Normal

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

b. SPI (Gamma distribution)

Rainfall (mm)
1000 2000 3000 4000 5000 6000 7000 8000 9000

0

0.2

0.4

0.6

0.8

1

C
D

F

 

 

Empirical CDF

Fitted CDF

CDF thresholds



39 
 

 

Figure 14: Classification of historical droughts during a water-year at Grid 251 in NE India using probabilistic and standard SPI approaches. The 

solid blue line represents cumulative rainfall during a water-year, a colored bar denotes drought classes and its length represents probability of 

drought state.  
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Figure 15: Same as Fig. 11 but for Grid 278 in the Thar Desert of Western India.  
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Figure 16: Same as Fig. 12 but for Grid 278 in the Thar Desert of Western India.  
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Figure 17: Same as Fig. 13 but for Grid 278 in the Thar Desert of Western India.  
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Figure 18: Same as Fig. 14 but for Grid 278 in the Thar Desert of Western India.  
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