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ABSTRACT 

Water quality data at gaging stations are typically compared with established federal, state, or local 

water quality standards to determine if violations (concentrations of specific constituents falling 

outside acceptable limits) have occurred. Based on the frequency and severity of water quality 

violations, risk metrics such as reliability, resilience, and vulnerability (R-R-V) are computed for 

assessing water quality-based watershed health. In this study, a modified methodology for 

computing R-R-V measures is presented, and a new composite watershed health index is proposed. 

Risk-based assessments for different water quality parameters are carried out using identified 

national sampling stations within the Upper Mississippi River Basin, the Maumee River Basin, 

and the Ohio River Basin. The distributional properties of risk measures with respect to water 

quality parameters are reported. Scaling behaviors of risk measures using stream order, specifically 

for the watershed health (WH) index, suggest that WH values increased with stream order for 

suspended sediment concentration, nitrogen, and orthophosphate in the Upper Mississippi River 

Basin. Spatial distribution of risk measures enable identification of locations exhibiting poor 
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watershed health with respect to the chosen numerical standard, and the role of land use 

characteristics within the watershed.  

Keywords: Reliability, resilience, vulnerability, watershed health, scaling, trend analysis, water 

quality, stream networks 
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1. INTRODUCTION: 

Clean drinking water is not only essential for human health, good water quality is important for 

avoiding coastal eutrophication and ocean acidification, and for maintaining healthy riverine, 

marine, and coastal ecosystems which is one of the 17 goals of United Nation’s Sustainable 

Development Goals 2015-2030. Risk-based assessments have been used by water resources 

planners for characterizing reservoirs (Hashimoto et al., 1982; Moy et al., 1986; Vogel and 

Bolognese, 1995; Jain and Bhunya, 2008) and urban-water distribution networks (Mondal et al., 

2010). Risk analyses have also been popularly used in water quality assessment (Maier et al., 2001; 

Hoque et al., 2012, 2013, 2014, 2016), evaluating the impact of climate change on water resources 

systems (Asefa et al., 2014; Fowler et al., 2003; Mondal and Wasimi, 2007), hydrological impact 

of rain water harvesting systems (Glendenning and Vervoort, 2011) and for drought 

characterization (Maity et al., 2012). The risk measures that are commonly computed in most risk 

analyses are reliability, resilience and vulnerability (R-R-V). Reliability is the probability that the 

system is in compliance at a given time with respect to user specified water quality standard; 

resilience is defined as the probability of the system to recover to a compliant state given that it 

was non-compliant the previous time step; and vulnerability is a measure of the average severity 

of damage during a non-compliant event. While reliability and resilience have probabilistic 

definitions, vulnerability is often used to quantify the average magnitude of damage caused during 

a failed (or catastrophic) event. As a result, previously used vulnerability measures have not been 

comparable to reliability and resilience. In this study we introduce an objective framework for 

computing a vulnerability metric in water quality risk assessment that is dimensionless and ranges 

between zero to one. Though the proposed definition is not truly a probability measure, it 

nevertheless has distributional properties. We also propose a composite water quality-based 

watershed health measure that describes the overall health of the watershed with respect to any 
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chosen water quality constituent. By definition, the composite watershed health measure also 

scales between zero and one, with one indicating a very healthy watershed and vice-versa. 

Since risk measures are computed at USGS stations located along the stream network, they may 

follow scaling laws. Scaling laws have been a popular topic in watershed hydrology. Specifically, 

Horton's scaling laws (Horton, 1945) provided valuable insights into the hierarchical 

organizational structure of stream networks within watersheds. These laws also provided an 

understanding on how the physical properties of streams (e.g. flow characteristics, slope, etc.) 

would change as a function of spatial scale. Building on this, Strahler (1952, 1957) and Shreve 

(1966) popularized the concept of stream orders where numbers are assigned to stream reaches 

based on their hierarchies. Streams that are farthest from the watershed outlet have lowest stream 

orders, and those that are closest to the outlet have higher stream orders. While some researchers 

have highlighted the limitations of stream orders and proposed modifications (Peckham and Gupta, 

1999; Gangodagamage et al., 2011), others have proposed alternative approaches to scaling 

analysis (Rigon et al., 1996; Betz et al., 2010; Zaliapin et al., 2010; Gangodagamage et al., 2011). 

Because of its simplicity, stream order continues to be used in many scaling studies (King et al., 

2005; Vondracek et al., 2005; Hoque et al., 2014).  For example, Hoque et al. (2014) investigated 

the scaling behavior of watershed risk measures over four study watersheds in the U.S. Midwest 

using the Soil & Water Assessment Tool (SWAT) and two scaling measures – contributing upland 

area and stream order. Their study focused on finding the effective stream order threshold that 

would yield stable risk measures; however, additional research is needed using measured 

streamflow data across large river basins. 

In this study we investigated scaling laws using actual streamflow measurements within large river 

basins. Stream order and drainage density were considered as candidate scaling measures. 



6 | P a g e  

 

Drainage density is defined as the ratio of total length of streams within a drainage basin divided 

by the total drainage area; i.e. it provides a measure of how well existing streams drain a basin. 

We specifically ask the following questions: What are the distributional properties of these risk 

measures, and are the means of these risk measures similar at stations of the same stream order or 

those that have the same drainage density? Do risk measures of reliability, resilience and newly-

defined vulnerability increase (or decrease) as we move downstream (lower stream order to higher 

stream order) or how are they related to different values of drainage density, i.e. do they follow 

popular scaling laws within large river systems?  

We further investigate the spatial distribution of risk measures over large river basins as a prelude 

to identifying potential source areas. We relate the spatial distribution of risk measures with 

dominant land use type of each drainage area. Such a comparison allows us to identify land use 

categories that influence risk measures for different water quality parameters. Mann-Kendall trend 

test and Sen’s slope (Kendall, 1948; Sen, 1968; Hirsch, 1982; Hamed and Ramachandra Rao, 

1998) are used to identify influences that are statistically significant. These insights can serve as a 

useful guide for watershed risk assessment and for implementing useful management plans. 

2. STUDY AREA: 

The Upper Mississippi River Basin (UMRB), the Ohio River Basin (ORB), and the Maumee River 

Basin (MRB) were chosen as the study area. The states within the UMRB study area include 

Minnesota (MN), Wisconsin (WI), Iowa (IA), Illinois (IL), and parts of Missouri (MO). The 

UMRB has dominant agricultural land use (64%) and drains into Gulf of Mexico. The ORB is 

spread over states of Indiana (IN), Ohio (OH), Kentucky (KY), and parts of Illinois (IL), Tennessee 

(TN), Pennsylvania (PA), West Virginia (WV), and New York (NY). It has dominant forest land 

use (46%) followed by agricultural land use (44%) and drains into the Mississippi River and 
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ultimately into the Gulf of Mexico. Due to intensive agricultural activities that involve application 

of fertilizers, both UMRB and ORB are considered to be among the primary sources of nutrients 

that reach the Gulf and cause eutrophication (Burkart and James, 1999; Alexander et al., 2008). 

The MRB is the largest Great Lakes watershed, draining all or parts of 17 Ohio (OH) counties, 

two Michigan (MI) counties and five Indiana (IN) counties into Maumee Bay and then to Lake 

Erie just east of Toledo, Ohio. The MRB is agriculturally intensive (53%) and the nutrients that 

get washed off from this river basin cause algal blooms in Lake Erie during the summer months 

(Michalak et al., 2013).  

A total of 214 USGS stations (Figure 1) - 57 stations in UMRB, 99 stations in ORB, and 58 stations 

in MRB with available water quality (WQ) data were identified over the study area. The U. S. 

Geological Survey (USGS, http://waterdata.usgs.gov/nwis/rt) daily streamflow dataset was 

utilized. In general, streamflow data are subjected to human interference, and therefore data 

contain both natural and regulated flows. Only unregulated stations were included in this study.  

http://waterdata.usgs.gov/nwis/rt
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Figure 1: Study area showing unregulated USGS stations. Green markers denote stations where 

water quality data are available. 

The U. S. Geological Survey (USGS, goo.gl/K1Th9D) daily water quality dataset and the USGS 

National Water Quality Assessment (NAWQA, goo.gl/Wq5dYi) data warehouse were used to 

collect chemical, biological and physical water quality data for the study area where available. We 

have a total of 151 stations with Suspended Sediment Concentration data (parameter code 80154), 

70 stations with Nitrate + Nitrite data (parameter code 00631), and 49 stations with 

Orthophosphate data (parameter code 00671). These parameters were chosen based on the number 

of sampling stations with minimum 30 observations over the study period (1966 to current 

depending on data availability). The threshold of 30 observations was chosen to ensure a 

statistically robust model during reconstruction of the WQ time series. 

http://goo.gl/K1Th9D
https://goo.gl/Wq5dYi
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3. METHODOLOGY: 

While daily continuous records of streamflow data were available over the study area, water 

quality data are discontinuous in time. Using the data reconstruction method proposed in Hoque 

et al. (2012) water quality data at all stations were reconstructed as a function of daily streamflow 

measurements available at those stations using relevance vector machines (RVM; Bishop, 2006; 

Schölkopf and Smola, 2002; Tipping, 2001). Let 𝑋𝑡 be the daily reconstructed time series of a 

water quality parameter with standard numerical target 𝑋∗. We then define compliance (𝑆) and 

noncompliance states (𝐹) as: 

𝑆: {𝑋𝑡 ≤ 𝑋∗}  is compliance state   (𝑋𝑡 > 𝑋∗, e.g., for Dissolved Oxygen) 

𝐹: {𝑋𝑡 > 𝑋∗}  is noncompliance state  (𝑋𝑡 ≤ 𝑋∗, e.g., for Dissolved Oxygen) 

A compliance event is one where the reconstructed water quality data is below (or above in case 

of Dissolved Oxygen or DO) the standard numerical target for one or more successive days, and 

is noncompliant otherwise. Then using the definitions of risk measures given by Hashimoto et al. 

(1982) and Hoque et al. (2012), reliability (𝑝) is defined as the probability of the system to be in 

compliant state. Mathematically it can be written as  

𝑝 = 1 − 𝑃{𝑋𝑡 ∈ 𝐹} =  1 −
1

𝑛
∑ 𝑧𝑡

𝑛
𝑡=1  (1) 

where zt = 1 when 𝑋𝑡 ∈ 𝐹 and 0 when 𝑋𝑡 ∈ 𝑆, and 𝑛 is the total number of data points. 

Similarly, resilience (𝑟) is defined as the probability of the system to recover from a non-

compliance state and can be mathematically written as below: 

𝑟 = 𝑃{𝑋𝑡+1 ∈ 𝑆|𝑋𝑡 ∈ 𝐹} =
𝑃{𝑋𝑡+1∈𝑆 ∩𝑋𝑡∈𝐹}

𝑃{𝑋𝑡∈𝐹}
 =

∑ 𝑦𝑡
𝑛
𝑡=1

∑ 𝑧𝑡
𝑛
𝑡=1

=
𝑙

𝑚
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𝑟 = 1 when 𝑋𝑡 ∈ 𝑆 for all t             (2)   

where 𝑦𝑡 = 1 when 𝑋𝑡+1 ∈ 𝑆 and 𝑋𝑡 ∈ 𝐹 and 0 otherwise, and 𝑚 is number of times where 𝑋𝑡 >

𝑋∗ (𝑋𝑡 < 𝑋∗, e.g., in case of oxygen) or 𝑚 = ∑ 𝑧𝑡
𝑛
𝑡=1 , and 𝑙 = ∑ 𝑦𝑡

𝑛
𝑡=1 . 

The standard definitions of vulnerability involve quantification of magnitude of damage during a 

noncompliant event. For water quality violations in stream networks there is no objective way in 

which magnitude of damage can be quantified. Previous studies on water supply and water quality  

have computed vulnerability by quantifying magnitude of violations with respect to a chosen 

standard (Hoque et al., 2012; Kjeldsen and Rosbjerg, 2004; Kundzewicz and Kindler, 1995; Moy 

et al., 1986). These resulting vulnerability measures did not scale from 0 to 1.   

In this study we propose a new metric (v) – robustness  – that scales between 0 and 1, and can be 

mathematically defined as the exponent of the negative of the sample mean of log normalized ratio 

of Xt to the standard value as follows   

𝑣 = 𝑒𝑥𝑝 {−
1

𝑚
∑ 𝑙𝑛 [

𝑄𝑡𝑋𝑡∆𝑡

𝑄𝑡𝑋∗∆𝑡
]  𝐻[𝑋𝑡 − 𝑋∗]𝑛

𝑡=1 }               (𝑙𝑛 [
𝑄𝑡𝑋∗∆𝑡

𝑄𝑡𝑋𝑡∆𝑡
] 𝐻[𝑋∗ − 𝑋𝑡] in case of DO) (3) 

where m is number of times where 𝑋𝑡 > 𝑋∗, 𝑄𝑡𝑋𝑡∆𝑡 is the water quality load at time 𝑡, 𝑄𝑡𝑋∗∆𝑡 is 

the standard water quality load at time 𝑡 and 𝐻[. ] is the Heaviside function that accounts only for 

the noncompliant events. Note that when deviations of 𝑋𝑡 from 𝑋∗ are large 𝑣 → 0; when 

deviations are small 𝑣 → 1, and vice versa for a constituent whose concentration should be less 

than the standard (e.g., oxygen). This is consistent with definitions for reliability (𝑝) and resilience 

(𝑟). Vulnerability can now be quantified as:  

𝑉 = 1 − 𝑣 (4) 
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Note that with these definitions, robustness and vulnerability have the same distributional 

properties as random variables. We now define a conservative composite measure of watershed 

health (ℎ) as the geometric mean of the three indices: 

ℎ = (𝑝 𝑟 𝑣)
1

3 (5) 

If p = r = v =1, h =1, if either one is 0, h = 0, i.e. a watershed/catchment is healthy when all risk 

measures are high (close to 1), otherwise it is not. 

Suspended sediment concentration (SSC, parameter code 80154, standard 30 mg/L) was chosen 

as the water quality parameter to monitor sediment erosion by runoff and turbidity in streams. 

Similarly, nitrite and nitrate (NO2 + NO3 in mg/L as N, parameter code 00631, standard 10 mg/L) 

were chosen as the water quality parameters of interest to monitor nitrogen concentrations within 

the study area. Orthophosphate (parameter code – 00671, standard of 0.1 mg/L) was chosen as the 

water quality parameter of interest to monitor Phosphorus concentrations over the study area. 

These standards were adopted from US EPA (1986). The RVM (Hoque et al., 2012) was 

implemented to reconstruct the water quality time series along with corresponding uncertainties. 

The latter was computed from an ensemble of 10,000 time series realizations generated by the 

Monte Carlo approach used in RVM. Reliability, resilience, robustness, vulnerability and 

composite watershed health measure were computed using each of these 10,000 reconstructed 

water quality time series realizations at all stations in the study area where the three water quality 

constituents and streamflow rates were monitored.  

These 10,000 values of each risk metric were then used to study the distributional properties of 

these risk indicators. Using model selection metrics such as Akaike Information Criteria (AIC; 

Akaike, 1974) and Bayesian Information Criteria (BIC; Schwarz, 1978) several candidate 
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probability distributions such as Beta, Birnbaum-Saunders, Exponential, Extreme value, Gamma, 

Generalized extreme value, Generalized Pareto, Inverse Gaussian, Logistic, Log-logistic, 

Lognormal, Nakagami, Normal, Rayleigh, Rician, t location-scale and Weibull distribution were 

tested. Distribution properties of the risk metrics were investigated over all stations in the study 

area for suspended sediment concentration, nitrogen and phosphorus, and for different water 

quality standards (e.g. US EPA (1986), Aquatic Life Criteria, Human Health Criteria, Maximum 

Contaminant Load for drinking water, etc.) of these chosen constituents. Further, to statistically 

confirm, if the risk measures (with respect to chosen WQ constituent) obtained for different 

numerical targets were different compared to commonly used standard (e.g. 30 mg/L for SSC; US 

EPA, (1986)), a Kolmogorov-Smirnov (KS) test was performed. 

To study the scaling relationship of risk measures within a river basin, first, their box-plots were 

compared for different stream orders. Then, Mann-Kendall (MK) trend test was performed on their 

mean values and Sen’s slope was reported. The risk measures were said to statistically increase 

with stream orders if the p-value of MK-test was less than the critical value (𝛼 = 0.05) and Sen’s 

slope was positive. Similarly, risk measures were said to statistically decrease with stream orders 

if p-value was less than the critical value (𝛼 = 0.05) and Sen’s slope was negative. The MK-test 

was also repeated for lower-order (≤ 2) and higher-order (> 2) streams within a river basin. 

Finally, to study the spatial distribution of risk measures and explore their relationship with 

different land use types, a combination of spatial plots, scatter plots of risk measures versus 

percentage land use, and Mann-Kendall trend tests were used. The Mann-Kendall trend test was 

performed by considering stations over each river basin separately. 
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4. RESULTS AND DISCUSSION: 

4.1 Distribution properties of risk measures 

For any chosen water quality constituent at a USGS monitoring station, following Hoque et al. 

(2012) and equations (1)-(5), reliability, resilience, vulnerability and composite watershed health 

measures were computed for each of the 10,000 Monte-Carlo realizations of reconstructed water 

quality time series. It should however be noted that we have not included uncertainty in streamflow 

measurements when reconstructing water quality time series as information on measurement error 

was not available at USGS stream gauges used in this study. Figure 2 shows the empirical 

distribution of the risk metrics from the 10,000 simulations at USGS station 3015500 for 

suspended sediment concentration (SSC) along with the fit of four distributions according to best 

BIC scores. The numerical target for SSC was set to 30 mg/L. For this station, Beta distribution 

provided the best fit for reliability and watershed health measures. For resilience and robustness 

measures, Rician and Gamma distributions had best BIC scores respectively, while Beta 

distribution was still among top-6 distributions and the differences in BIC scores of the top-6 

distributions were negligible. While we have investigated the distributional properties over all 

stations in the study area with respect to suspended sediment concentration, nitrogen, and 

phosphorus, for the purpose of brevity we have only included results from three randomly selected 

stations (each belonging to either UMRB, MRB or ORB, see Figure A3, Figure A4, and Figure 

A5) in Appendix. The Beta distribution provided fairly good description of risk measures for all 

three water quality constituents, as well as for all stations in the study area.  
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Figure 2: Four best fit distributions to 10000 realizations of a) reliability, b) resilience, c) 

robustness, and d) composite Watershed Health measure for Suspended Sediment Concentration 

(SSC) at USGS station 3015500.  

A common feature of the distributional properties of the risk metrics is that they are tightly bound 

about the mean (see Figure A2 in Appendix). The tight bounds indicate that any chosen Monte-

Carlo realization could provide risk estimates close to the true value (or the mean of the 

distribution). While the mean of the distribution shifted for other water quality standards, the 

values were found to be tightly bound similar to Figure A2. Further, the histograms of risk 

measures (Figure A6) with respect to WQ constituents for different choices of numerical targets 
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(e.g. 7.5 mg/L, 15 mg/L, 30 mg/L, 45 mg/L, 60 mg/L, and 120 mg/L for SSC) were well separated 

indicating that risk measures were sensitive to the choice of numerical target and the Kolmogorov-

Smirnov (KS) tests (Figure A7 and Figure A8 in Appendix) at different significance levels 𝛼 (e.g. 

0.1, 0.05, 0.025, and 0.01) showed that the risk measures obtained for different numerical targets 

were statistically different compared to commonly used standards (US EPA, 1986). The study 

found that at stations where results were not sensitive, the reconstructed water quality time series 

never exceeded the numerical targets. Similar results may also be obtained when the magnitude of 

exceedances are large enough that raising or lowering the standard does not affect the risk 

measures, or when there is large uncertainty in the reconstructed water quality time series. 

Discussion of these results with respect to SSC, Nitrate + Nitrite, and Orthophosphate are provided 

in Appendix (Figure A7 and Figure A8). 

4.2 Scaling behavior of risk measures 

The scaling behavior of risk measures was investigated for suspended sediment concentration (77, 

40, and 34 stations), nitrogen (38, 20, and 12 stations) and phosphorus (30, 9, and 10 stations) over 

UMRB, ORB and MRB respectively. Strahler number and drainage density were initially chosen 

as the scaling metrics. No scaling behavior was apparent with drainage density, and results with 

Strahler number, also known as stream order, are discussed below. For suspended sediment 

concentration the standard (or threshold) was set to 30 mg/L (US EPA, 1986), reliability, 

resilience, robustness and the composite watershed health measures were computed at each station 

in the study area where measurements were available. 

The top row in Figure 3 shows the scaling relationship of reliability with stream order in UMRB, 

ORB and MRB, respectively. Mann-Kendall trend test was performed on the mean values of 

reliability for all stream orders, as well as for lower-order (≤ 2) and higher-order (> 2) streams 
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within a river basin. The results for the latter are included within brackets. When the results are 

statistically significant, the Sen’s slope is shown as a red dashed line, and the slope values are 

shown in red color. The height of the box plots suggest that there is scatter in reliability measures 

for each stream order, but their median values show relatively flat (Sen’s slope = -0.0001 for 

UMRB) to decreasing trends (Sen’s slope -0.03 and -0.06 for ORB and MRB, respectively) with 

increase in stream order, although they were not statistically significant at 𝛼 = 0.05 based on the 

Mann-Kendall test. The scaling relationship of resilience with stream order for UMRB, ORB and 

MRB are shown in the second row of Figure 3. Median values of resilience show a relatively flat 

trend (Sen’s slope = -0.0002) in UMRB and decreasing trends (Sen’s slope of -0.035 and -0.035) 

over ORB and MRB with increase in stream order. However, these trends were not statistically 

significant according to Mann-Kendall trend test. When considering only higher stream orders 

(>2), the mean resilience values showed a statistically significant decreasing trend (Sen’s slope = 

-0.05) for ORB, indicating deteriorating downstream conditions. Reliability and resilience are 

expected to have similar behavior (Hashimoto et al., 1982). The newly defined risk measure, 

robustness (𝑣), shows a statistically significant positive trend (Sen’s slope = 0.035) with increase 

in stream order for UMRB, and weak decreasing trends (Sen’s slope of -0.028 and -0.042) for 

ORB and MRB (third row of Figure 3). Therefore, vulnerability which is defined as (1 − 𝑣) would 

show a decreasing trend with stream order in UMRB. The statistically significant positive trends 

in robustness measures over UMRB are possibly due to dilution effects at higher stream orders – 

but this needs further investigation. Watershed health has a statistically insignificant decreasing 

trend (Sen’s slope of -0.03 and -0.05) with increase in stream order over ORB and MRB, however 

this trend is positive (Sen’s slope = 0.015) and significant for UMRB.  
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To attribute the reason for statistically significant improvements (according to MK trend test, see 

Figure 3) in mean watershed health (w.r.t. SSC) over UMRB another one-tailed KS test was 

performed. The KS test investigated whether watershed health values at all higher-order (stream 

order > 2) stations combined were statistically higher compared to all values computed at lower-

order (stream order ≤ 2) stations. The p-values from this KS test (see Table A1) indicated that the 

null hypothesis of similar distributions of watershed health between stations located at lower-order 

and higher-order streams could not be rejected at 5% significance level (𝛼). Table A2 shows the 

results from a one-tailed KS test with an alternate hypothesis that percentage area under agriculture 

land use for stations located along lower-order streams is statistically higher than for stations along 

higher-order streams. The p-values indicate that the null hypothesis (similar distributions) cannot 

be rejected at 5% significance level, and corroborates the results in Figure 6 (first row, first 

column) where stations from both lower- and higher-order streams are present in almost equal 

numbers at the lower (0-10%) and higher (70-95%) ends of the x-axis (percentage areas under 

agricultural land use). Finally, we also investigated whether forest land use may have played a role 

in improved watershed health (with respect to SSC) at higher stream orders. The p-values (see 

Table A3) indicate that percentage area under forest is statistically higher for higher-order streams, 

when compared to lower-order streams at 5% significance level in UMRB. These results support 

the theory of dilution effects (relatively pristine flows from forested land) at downstream locations 

in UMRB leading to improved watershed health.  

Based on previous scaling studies (Hoque et al., 2014) which have used models, there is an 

expectation to observe trends in risk measures with stream order. But we were not able to find such 

trends in this study because we have not used models. Models impose these scales explicitly, 

whereas such rules are not being imposed here during data reconstruction. Reconstructed 
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observational data do not recognize that these stations (and their observations) are part of a stream 

network, or that certain laws have to be obeyed, so there is less chance of realizing such trends.  
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 Figure 3: Scaling behavior of risk metrics for Suspended Sediment Concentration with respect to 

stream order at UMRB, ORB and MRB. Sen’s slope estimate from Mann-Kendall trend test for 

mean is shown. The values within the brackets denote Sen’s slope estimate from Mann-Kendall 

trend test for mean values of risk measures on lower- (≤ 2) and higher- (> 2) order streams 

respectively. Statistically significant trends (𝛼 = 0.05) are labeled in red color. Sen’s slope is 

denoted as a red dashed line for cases where trends are significant. 

The scaling relationships of different risk metrics for nitrogen were investigated by choosing 

stream order as the scaling metric. Nitrogen data records were available only at 20 stations in ORB 

and 12 stations in MRB. Therefore, scaling analysis over these basins were not performed. UMRB 

on the other hand had 38 nitrogen monitoring stations. Figure 4 shows the scaling results of risk 

metrics with respect to stream order over UMRB. While the slopes of the trends (Sen’s slope 

estimates were 0.015, 0.015, 0.005, and 0.01 for reliability, resilience, robustness, and watershed 

health, respectively) were found to be positive, they were not statistically significant at 

(𝛼 = 0.05). Positive trends in risk measures indicate that conditions improve as we move 

downstream in UMRB. Dilution effects may have played a role in improving conditions (Ahearn 

et al., 2005; Anbumozhi et al., 2005). As in the case of SSC, one-tailed KS tests were carried out 

to test several hypotheses. The p-values from KS test shown in Table A1 indicated that the null 

hypothesis of similar distributions in watershed health (with respect to nitrogen) at lower- and 

higher- stream orders could not be rejected at 5% significance level (𝛼). The p-values of KS test 

(Table A2), with an alternate hypothesis of statistically higher percentage area of agricultural land 

use at lower-order streams, indicate that the null hypothesis (similar distributions in percentage 

area between lower- and higher-order streams) cannot be rejected at 5% significance level, and 

this agrees with the results in Figure 6 (first row, second column) where the stations from both 
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lower- and higher-order streams are clustered around 85% mark. Next we investigated whether 

forest land use may have played a role in improved watershed health (with respect to nitrogen) at 

higher stream orders. Figure A1 (in Appendix) shows that the area under forest land use dominates 

as we move downstream, which implies smaller amounts of nutrients reach the receiving waters, 

and consequently may have caused dilution. The watershed health for nitrogen shows a statistically 

significant improvement with increase in forest land use (Figure 6; second row, second column). 

However, most of the markers tend to be clustered below 30% mark. Therefore, to test for 

statistical difference in percentage area of forest land use between lower-order and higher-order 

streams a one-tailed KS test was performed. The p-values in Table A3 indicate that in case of 

UMRB, the percentage area under forest is statistically higher for higher-order streams, when 

compared to lower-order streams at 5% significance level. These results lead us to believe that 

higher contribution of runoff from forested land at downstream locations in UMRB may have 

resulted in dilution and improved watershed health.   
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Figure 4: Scaling behavior of risk metrics for Nitrogen with respect to stream order at UMRB. 

Sen’s slope estimate from Mann-Kendall trend test for mean is shown. The values within the 

brackets denote Sen’s slope estimate from Mann-Kendall trend test for mean values of risk 

measures on lower- (≤ 2) and higher- (> 2) order streams, respectively. Statistically significant 

trends (𝛼 = 0.05) are labeled in red color. Sen’s slope is denoted as a red dashed line for cases 

where trends are significant. 

Reliability Resilience 

Robustness Watershed Health 

Stream order 
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Given the strong affinity of phosphorus to sediments, the scaling relationships of risk measures for 

phosphorus as a function of stream order were found to be similar to SSC (see Figure A9 in 

Appendix), with risk measures showing positive trend with increasing stream order. The positive 

trend was found to be statistically significant only for watershed health index, and may be 

attributed to potential dilution effects caused by waters originating from forested lands within 

UMRB resulting in improved health conditions as we move downstream (see Table A3). 

4.3 Spatial distribution of risk measures 

Figure 5 shows the spatial distribution of mean risk metrics for suspended sediment concentrations 

at several USGS stations in the study area where this water quality constituent is monitored 

(readers are referred to Figure A12 for a zoomed map of spatial distribution of risk measures at 

MRB). At few interior locations (stream order 3-5 in UMRB, 3-4 in ORB, and 2-3 in MRB) of the 

three river basins in the study area, reliability, resilience, and watershed health values are in the 

range 0.8 to 1.0 indicating very few violations with respect to the chosen water quality standard 

value. The vulnerability values for these stations are close to zero as expected. As we move further 

downstream (notice these also include several lower-order streams with predominant agriculture 

land use) we notice that the watershed health (and other risk measures) deteriorates to a range of 

0.3 to 0.8 in the middle reaches, and 0.1 to 0.3 in the lower reaches. The results from Figure 5 

when analyzed simultaneously with Figure 6 offer possible explanation. First column (Figure 6, 

SSC) indicates that watersheds with dominant agricultural land use and smaller area under forest 

land use are the current hotspots for suspended sediment concentration at the chosen water quality 

standard value. Mann-Kendall trend test on values of watershed health indicates that the trend is 

negative (Sens’s slope = -0.006) with respect to increasing agricultural land use area and is 

statistically significant. While watersheds (drainage areas) that are predominantly forests are 

generally pristine with respect to SSC (Mann-Kendall trend is positive and significant, with Sen’s 
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slope of 0.007). Although more dispersed, the pattern for phosphorus mimicked that for SSC (third 

in row 1 and 2, Figure 6)  

For nitrate, it can be observed that areas within the URMB drained by stream orders 1 to 3 and 

more than 80% agricultural land use have relatively low watershed health index values (second in 

first row, Figure 6). Drainage areas corresponding to higher stream orders show better watershed 

health values with decreasing % of agricultural land use. This pattern is accentuated by the visible 

separation of relatively lower health values (blue stations) from the relatively higher health stations 

(marked in yellow). This pattern is generally true for phosphorus where health values increase with 

the stream order but only with decreasing percentage of agricultural land use (third in first row, 

Figure 6). It appears that higher-order streams tend to be associated with less agriculture-

dominated areas and are generally healthier when compared to head-watersheds. Higher-order 

streams whose drainage areas are predominantly agricultural have low health values, especially 

with respect to suspended sediment concentration.   

A few water quality stations are available for predominantly urban catchments which occupy the 

smallest land-use fraction in the UMRB. The fourth row in Figure 6 shows that streams of order 1 

to 3 draining areas that are 70% or more urban are in poor health with respect to SSC, good health 

with respect to nitrate, and mixed health for phosphorus. 

Similar observations can be made with regards to WH values for SSC at ORB and MRB, but have 

not been shown here for brevity. For Nitrogen and Orthophosphate, stations (located in ORB and 

MRB) with agriculturally intensive drainage areas have high values for vulnerability, and low 

values for reliability, resilience, and watershed health (see Figure A10 and Figure A11 in 

Appendix).  



24 | P a g e  

 

                  

 

Figure 5: Spatial distribution of a) Reliability, b) Resilience, c) Vulnerability, and d) Watershed 

Health measures for Suspended Sediment Concentration (parameter code: 80154). 

 

a) b) 

c) d) 

UMRB 

ORB 

MRB 
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Figure 6: Relationship between watershed health index and area under agriculture land use (first 

row), forest land use (second row), water land use (third row), and urban land use (fourth row) for 

SSC Nitrogen Orthophosphate 
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SSC, Nitrogen, and Phosphorus at UMRB. The markers represent stations where these WQ 

constituents are measured, and they are color coded based on stream order. 

5. CONCLUSIONS: 

In this study, we proposed a new definition for robustness that scales conveniently between zero 

and one. A composite measure for water quality-based watershed health defined as the geometric 

mean of reliability, resilience and robustness was introduced. When the reliability, resilience and 

robustness measures are high, the resulting watershed health measure is high and vice-versa. The 

distributional properties of the risk metrics were briefly discussed. Among different candidate 

distributions, Beta distribution was recommended as a promising model. While the mean was 

found to shift based on the choice of water quality standard, the spread about the mean was tightly 

bound indicating that the risk measures computed from any of the 10000 Monte-Carlo simulations 

provides risk estimates that are close to the mean. Thus, for simplification purposes we can neglect 

the variation around the mean of the reconstructed series, and confidently use the risk value 

obtained from one MC simulation.  

The sensitivity analysis of risk measures indicated that except for some stations (about 30% of the 

stations) that record nitrogen data, the risk measures were found to be sensitive to the choice of 

numerical targets particularly for most stations that monitor SSC and Orthophosphate data.  

The nature of scaling was dependent on the choice of water quality parameter, and significant 

scatter in risk measures were observed at different stream orders. For SSC, there was significant 

increase in WH with stream order at UMRB. Similar trend results were obtained for WH using 

Orthophosphate at UMRB. However for Nitrogen, the computed trend with respect to stream 

orders was positive but not statistically significant. Positive trends in watershed health for the three 
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water quality constituents were attributed to dilution effects from drainage areas with 

predominantly forest land use. Based on earlier scaling studies there was an expectation to observe 

trends in risk measures with stream order. But such trends were not apparent in this study because 

the statistical reconstruction method used here does not recognize stations as part of any network, 

and therefore scaling laws are not imposed explicitly. However, this is not the case when 

hydrologic models are used for simulating flows or water quality time-series. 

In terms of spatial distribution of SSC risk measures over the study area, WH was found to decrease 

at stations that drain larger agricultural land use areas, whereas WH increased at stations with 

larger forest land use areas within the UMRB. Similar trend results were observed for WH based 

on Nitrogen, with WH decreasing with increase in agricultural land use areas, and WH increasing 

with increase in forest land use areas. The results for SSC and Nitrogen were statistically 

significant at UMRB. For Orthophosphate the trends were similar to SSC and Nitrogen, however 

it was statistically significant for forested area, and not statistically significant for agricultural land 

use areas. The results were found to be consistent for other river basins (ORB and MRB) although 

the number stations where observations were available were relatively small compared to UMRB. 

Watershed health with respect to water quality parameters were most impacted in agriculturally 

dominated watersheds, while those with highest percentage of forested areas (and thus most 

protected from changes) were not. The watershed health values at these relatively undisturbed 

(pristine) forested watersheds give us an estimate of what to expect as the upper limit of good 

watershed health. 

We expect similar results for forested watersheds in other areas, which have perhaps seen less 

human influence. But for agriculture watersheds where cultivation practices such as irrigation and 
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fertilizer application have been used, we should expect that with time, conditions would have 

deteriorated. 

We note that quality of reconstruction is affected by the number of observed water quality data 

points at a station. With fewer observations, there will be larger uncertainty (wider band around 

the median estimate) in our reconstructed series. There may be a critical number of data points 

needed for meaningful reconstruction. 
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A. APPENDIX: 

A.1 Climate over the study area: 

The study area receives precipitation under the following scenarios (Hirschboeck, 1991): (a) when 

moisture laden southerly winds from the Gulf of Mexico meet the continental polar wind entering 

through Canada, (b) when occasionally moisture laden winds from the Pacific ocean make it 

through the Rocky mountains, and (c) due to the great lakes. As the study area has a large 

geographic extent, there is significant spatial and temporal variation in precipitation. The average 

annual precipitation for UMRB is around 950 mm, ORB receives around 1150 mm and MRB 

receives approximately 1000 mm. While February is typically the driest month over the study 

region, May and June are among the wettest. Winters are extremely cold with average high of 

3.3℃ and average low of about -6℃, spring season is cool with average high of 16.8℃ and average 

low of 4.5℃, summers are warm with an average high temperature of 28.4℃ and average low 

temperature of 16.1℃, and finally during fall season, the study region has average high and low 

temperatures of 18.1℃ and 6℃, respectively. 
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A.2 Land use and Land cover over the study area: 

The land use and land cover map for the study area is shown in Figure A1. The land use land cover 

data was first obtained from National Land Cover Database 2011 (Homer et al., 2015) and then 

reclassified into four broad classes – water, urban, agriculture, and forest. The distribution of land 

use and land cover classes in the three river basins are as follows. For UMRB water is 8%, urban 

is 9%, forest is 19% and agriculture is 64%. For ORB water is 2%, urban is 10%, forest is 46% 

and agriculture is 42%. Similarly for MRB, water is 6%, urban is 24%, forest is 17%, and 

agriculture is 53%. Therefore the chosen study area has agriculture and forests as the dominant 

class. 
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Figure A1: Land use and Land cover map of the study area showing four broad classes of land use 

– Water, Urban, Forest and Agriculture. 

A.3 Distribution properties of risk measures: 

A.3.1 Beta distribution: 

Figure A2 shows the Beta distribution fit for all risk measures at USGS station 3015500, and we 

note that the spread is small. For example, reliability values have a spread of 0.01 [0.878 to 0.9], 

resilience values have a spread of 0.05 [0.61 to 0.66], robustness has a spread of 0.025 [0.598 to 

0.624] and watershed health metric has a spread of 0.025 [0.69 to 0.715]. 

 

Figure A2: Beta distribution fit to 10000 realizations of reliability, resilience, robustness, and 

composite Watershed Health measure for Suspended Sediment Concentration (SSC) at USGS 

station 3015500. 

The probability density function (pdf) of the beta distribution is 

𝑦 = 𝑓(𝑥|𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1𝐼(0,1)(𝑥) (1) 
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where 𝐵(. , . ) is the Beta function. The indicator function 𝐼(0,1)(𝑥) ensures that only values of 𝑥 in 

the range (0,1) have nonzero probability. The beta distribution has a functional relationship with 

the 𝑡 distribution. If 𝑌 is an observation from Student's 𝑡 distribution with 𝑣 degrees of freedom, 

then the following transformation generates 𝑋, which is beta distributed. 

𝑋 =  
1

2
+

1

2

𝑌

√(𝑣+𝑌2)
 (2) 

i.e., if 𝑌~𝑡(𝑣), then 𝑋~𝐵 (
𝑣

2
,

𝑣

2
) 

Some statistical properties of Beta distributions: 

Mean:  𝐸[𝑋] =
𝑎

𝑎+𝑏
,  also 𝐸[𝑙𝑛𝑋] = 𝜓(𝑎) −  𝜓(𝑎 + 𝑏) 

Where 𝜓 is the digamma function defined as: 𝜓(𝑥) =
𝑑

𝑑𝑥
𝑙𝑛Γ(𝑥) =

Γ′(𝑥)

Γ(𝑥)
, and Γ(𝑥) is the gamma 

function. 

Median: 
𝑎−

1

3

𝑎+𝑏−
2

3

, when 𝑎, 𝑏 > 1  

Mode: 
𝑎−1

𝑎+𝑏−2
 , when 𝑎, 𝑏 > 1 

Geometric mean: exp(𝐸[𝑙𝑛𝑋]) = exp (𝜓(𝑎) −  𝜓(𝑎 + 𝑏)) 

 

A.3.2 Distributional properties of risk measures for Suspended Sediment Concentration: 

The distributional properties of risk measures for suspended sediment concentration (SSC) with 

respect to a numerical target of 30 mg/L were analyzed at all stations in the study area where SSC 

data were available. For the purpose of brevity we show sample plots from three stations (USGS 

05526000, 04193500, 03320500), with each one of them belonging to UMRB, MRB, and ORB, 

respectively. The Beta distribution was found to be one of the best fit distribution for risk measures 
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at all stations. Since we are mostly dealing with probabilities, or measures (vulnerability and 

watershed health) that strictly scale between 0 and 1, we suggest the use Beta distribution to 

describe their properties. Figure A3a shows the histogram of composite watershed health, at USGS 

station 05526000 (Iroquois River near Chebanese, IL – located in the Upper Mississippi River 

Basin), obtained from 10,000 Monte-Carlo realizations. The mean watershed health is about 0.295 

and has a tight spread 0.02. The minimum watershed health value is about 0.285 and the maximum 

watershed health value is about 0.304. Similarly, the distributional properties for R-R-V measures 

were analyzed for this station. Figure A3b shows the histogram of watershed health, at USGS 

station 04193500 (Maumee River at Waterville, OH - located in the Maumee River Basin), 

obtained from 10,000 Monte-Carlo runs. The mean watershed health is about 0.315, with a spread 

of 0.02 (minimum value = 0.306, maximum value of 0.324). Figure A3c shows the Beta 

distribution fits (along with parameters) for R-R-V and watershed health at USGS station 

03320500 (Pond River near Apex, KY - located in the Ohio River Basin). The spread in the 

distribution for all risk measures are small, indicating smaller uncertainty in their estimation. This 

also indicates that we may not really need 10,000 MC runs to get a robust estimate of these risk 

measures. 
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Figure A3 : Four best fit distributions to 10000 realizations of composite Watershed Health 

measure for Suspended Sediment Concentration (SSC) at USGS stations a) 05526000 in UMRB, 

and b) 04193500 in MRB. The beta distribution fit to 10000 realizations of reliability, resilience, 

robustness, and composite Watershed Health measure for SSC at USGS station 03320500 in ORB 

is shown in panel (c). 

a) b) 

c) 
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A.3.3 Distributional properties of risk measures for Nitrogen: 

Distributional properties of risk measures for nitrogen (parameter code: 00631) were analyzed at 

all stations where this water quality constituent was measured. The numerical standard was set to 

10 mg/L and risk measures were computed using reconstructed daily series for this parameter (i.e. 

for each of the 10,000 Monte-Carlo runs). Figure A4a-b shows the histogram of watershed health 

at USGS stations 05572000 (Sangamon River at Monticello, IL – located in the Upper Mississippi 

River Basin) and 04193500 (Maumee River at Waterville, OH - located in the Maumee River 

Basin). As in the case of SSC, the Beta distribution was found to be one of the best fit distributions 

(Beta was listed as the 5th best distribution for 05572000, and therefore not included in the figure 

legend). This was consistent across different metrics, as well as at other stations where this water 

quality constituent was measured. The probability density function for different risk measures at 

USGS station 03373530 (Lost River near Leipsic, IN – located in the Ohio River Basin) are shown 

in Figure A4c. Though the spread in the distribution for resilience is wider compared to other risk 

measures, it is still comparatively small (about 0.1, with a minimum of 0.8 and maximum of 0.9). 

The mean watershed health is around 0.88, indicating high level of compliance with respect to the 

chosen numerical standard of 10 mg/L. 
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Figure A4: Four best fit distributions to 10000 realizations of composite Watershed Health 

measure for Nitrogen (parameter code: 00631) at USGS stations a) 05572000 in UMRB, and b) 

04193500 in MRB. The beta distribution fit to 10000 realizations of reliability, resilience, 

robustness, and composite Watershed Health measure for Nitrogen at USGS station 03373530 in 

ORB is shown in panel (c). 

a) b) 

c) 



39 | P a g e  

 

A.3.4 Distributional properties of risk measures for Orthophosphate: 

Distributional properties of risk measures for orthophosphate (parameter code: 00671) were also 

analyzed at all stations where measurements were available. Using a numerical standard of 0.1 

mg/L, risk measures were computed for each of the 10,000 (MC-realizations) reconstructed daily 

series for this parameter. Figure A5a-b shows the histogram of watershed health at USGS stations 

05584500 (La Moine River at Colmar, IL – located in the Upper Mississippi River Basin) and 

04193500 (Maumee River at Waterville, OH - located in the Maumee River Basin). Though Beta 

distribution was not among the top-4 distributions that were tested, it still provided very good fit. 

Therefore, Beta distribution was used for describing the distributional properties of risk measures 

for orthophosphate. The probability density plot using Beta distribution for different risk measures 

at USGS station 03274000 (Great Miami River near Hamilton, OH – located in the Ohio River 

Basin) are shown in Figure A5c. The mean watershed health is around 0.405, indicating moderate 

level of compliance with respect to the chosen numerical standard of 0.1 mg/L. 
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Figure A5: Four best fit distributions to 10000 realizations of composite Watershed Health 

measure for Orthophosphate (parameter code: 00671) at USGS stations a) 05584500 in UMRB, 

and b) 04193500 in MRB. The beta distribution fit to 10000 realizations of reliability, resilience, 

robustness, and composite Watershed Health measure for Orthophosphate at USGS station 

03274000 in ORB is shown in panel (c). 

a) b) 

c) 
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A.3.5 Impact of varying WQ standard on risk measures: 

The histograms of reliability (1000 MC simulations or repeated model runs with different inputs) 

with respect to SSC at USGS station 03015500, for different choices of numerical targets (i.e. 7.5 

mg/L, 15 mg/L, 30 mg/L, 45 mg/L, 60 mg/L, and 120 mg/L) were then compared (Figure A6). 

Two features may be noted from Figure A6 namely, a) histograms are tightly bound which indicate 

that a single MC simulation can provide a good estimate of reliability measure, and b) they are 

well separated indicating that reliability measures at this station are sensitive to the choice of 

numerical target. A stringent target of 7.5 mg/L on SSC results in more number of violations 

causing the reliability measure to drop to a mean value of 0.54. On the other hand, a target of 120 

mg/L means that there are fewer violations, leading to high reliability of 0.99 (mean). 
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Figure A6: Histogram of reliability with respect to suspended sediment concentration at USGS 

station 03015500 for different choice of numerical standards (i.e. 7.5 mg/L, 15 mg/L, 30 mg/L, 45 

mg/L, 60 mg/L, and 120 mg/L). 

A Kolmogorov-Smirnov (KS) test was performed to investigate if the reliability measures (with 

respect to SSC) obtained for different numerical targets were significantly different compared to 

commonly used standard of 30 mg/L (US EPA, 1986). Figure A7 shows the results of KS test at 

USGS stations (denoted as circular markers) over the study region where SSC observations were 

available. The filled markers indicate that H0 is rejected as the p-value for KS test was less than 

the statistical significance level    of 0.05. Results were found to be statistically significant at 

all stations in the study region for smaller numerical targets (7.5 mg/L and 15 mg/L) and at all but 

one station (USGS 05331833, located in UMRB) for larger numerical targets (45 mg/L, 60 mg/L, 

and 120 mg/L). Similar results were obtained, when the KS test was repeated for different values 

of  (i.e. 0.1, 0.025, and 0.01). 
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Figure A7: Kolmogorov-Smirnov (KS) test results show whether the samples of reliability for 

different choices of numerical targets (e.g. 7.5 mg/L, 15 mg/L, 45 mg/L, 60 mg/L, and 120 mg/L) 

were generated from the same distribution as that of 30 mg/L standard for SSC. The circular 

markers denote USGS stations where SSC measurements were available. Filled markers indicate 

that the distributions were different and hollow markers indicate that the distributions were same. 

Significance level,  , was set to 0.05. 

The results of different analyses presented in this study is comparable even within watersheds with 

varying characteristics as long as the same WQ standards are being used to compute risk measures 

(e.g. 30 mg/L for SSC), and the results are being interpreted only with respect to water quality 

within the stream. The consequences of poor (or good) watershed health for example, may however 

be felt differently depending on the location and water use (e.g. agricultural use, industrial use, 
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domestic use, sustaining aquatic biodiversity etc). This is irrespective of heterogeneity in 

watershed characteristics 

The KS-test results of reliability measures for nitrogen (see Figure A8) indicate that out of 70 

stations where nitrogen data (parameter code 00631) were available, there were 14 stations where 

H0 was not rejected when the numerical target was 2.5 mg/L. Similarly, the H0 of KS-test was not 

rejected at 21, 28, 28, and 28 stations when the target was 5 mg/L, 15 mg/L, 20 mg/L, and 40 

mg/L, respectively. When the numerical target is reduced to 5 mg/L, at several stations (shown as 

hollow markers in Figure A8) more cases of violations will be picked up when compared to 

commonly used standard of 10 mg/L (US EPA, 1986). Similarly, when the numerical target is 

increased from 10mg/L to say 40 mg/L, fewer cases of violations will be picked up. Further, 

investigation showed that at these stations the reconstructed water quality time series never 

exceeded the numerical targets (see Figure A10). Similar results were obtained when the KS test 

was repeated for different significance levels (i.e.   = 0.1, 0.025, and 0.01). There may be other 

scenarios where we may see similar results: a) when the exceedances are so high that raising or 

lowering the standard does not affect the results much, or b) the uncertainty of the reconstructed 

series may be so wide that even by altering the standard we still pick similar number of violations.  

Sensitivity results for Orthophosphate (parameter code 00671) were similar to that of SSC. 

Distributions of reliability measures obtained for numerical targets 0.025 mg/L, 0.05 mg/L, 0.15 

mg/L, 0.2 mg/L, and 0.4 mg/L were compared with distribution of reliability measures for the 

commonly used standard of 0.1 mg/L (US EPA, 1986). Except at one USGS station (04175600) 

in MRB, at all other stations the H0 was rejected. Similar distributional findings were found for 

other risk measures – resilience, vulnerability, and watershed health. 
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Figure A8: Kolmogorov-Smirnov (KS) test results show whether the samples of reliability for 

different choices of numerical targets (e.g. 2.5 mg/L, 5 mg/L, 15 mg/L, 20 mg/L, and 40 mg/L) 

were generated from the same distribution as that of 10 mg/L standard for Nitrate + Nitrite 

(parameter code 00631). The circular markers denote USGS stations where Nitrate + Nitrite 

measurements were available. Filled markers indicate that the distributions were different and 

hollow markers indicate that the distributions were same. Significance level,  , was set to 0.05. 

A.4 Scaling behavior of risk measures for Orthophosphate  

By setting the water quality standard for phosphorus as 0.1 mg/L (US EPA, 1986), reliability, 

resilience, vulnerability (and robustness) and the composite watershed health metrics were 

computed at each station where measurements were available. The scaling relationships of risk 

measures for phosphorus as a function of stream order was investigated (Figure A9). As only few 

stations have records of Orthophosphate over ORB (9 stations) and MRB (10 stations), results are 

only shown for UMRB (30 stations). All the risk measures at UMRB showed a positive trend with 
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increasing stream orders, although the trend was significant (at 𝛼 = 0.05) only for watershed 

health index (Sen’s slope = 0.0342). The latter is consistent with observed positive trend for 

suspended sediment concentration given the strong affinity of phosphorus to sediments. The trend 

results indicate that potential dilution effects caused by increased potential of mixing with waters 

originating from forested lands within UMRB might be contributing to improved health conditions 

as we move downstream. This reasoning was confirmed using KS test, and the results are shown 

in Table A3. 

 

Reliability Resilience 

Robustness Watershed Health 

Stream order 
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Figure A9: Scaling behavior of risk metrics for Orthophosphate with respect to stream order at 

UMRB. Sen’s slope estimate from Mann-Kendall trend test for mean is shown. The values within 

the brackets denote Sen’s slope estimate from Mann-Kendall trend test for mean values of risk 

measures on lower- (≤ 2) and higher- (> 2) order streams respectively. Statistically significant 

trends (𝛼 = 0.05) are labeled in red color. Sen’s slope is denoted as a red dashed line for cases 

where trends are significant. 

A.5 Spatial distribution of risk measures 

Figure A10 shows the spatial distribution of risk metrics for Nitrogen (parameter code: 00631) 

which can be used to visually identify locations with low watershed health values. Several stations 

in the upper reaches of UMRB and ORB, and few stations in MRB have high reliability values 

(equal to 1.0) for nitrogen indicating zero violations with respect to the chosen standard. These 

stations drain areas with predominant forest land use (see Figure A1). Stations with agriculturally 

intensive drainage areas have lower reliability, resilience and watershed health (see second column 

in Figure 6 of main text), and higher values of vulnerability. Specifically, the Mann-Kendall trend 

test (Figure 6) shows significant negative slope, indicating that watershed health measure for 

Nitrogen decreases with increase in agricultural land-use. A significant positive trend was 

observed for watershed health measure versus forest areas, indicating better health metric for 

Nitrogen when forest land use is high. However, it must be noted that the results are sensitive to 

the choice of water quality standard (see Figure A6 and Figure A7). If the standard for nitrogen is 

lower than 10 mg/L, we expect to observe more stations with lower watershed health and vice-

versa (Figure A8). 
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Figure A10: Spatial distribution of a) reliability, b) resilience, c) vulnerability, and d) Watershed 

Health measures for Nitrite + Nitrate (parameter code: 00631). 

Figure A11 shows the spatial distribution of risk metrics for Orthophosphate. Few stations in the 

upper reaches of the study area with drainage areas that are predominantly of forest land use (see 

Figure A1), have high watershed health measures indicating smaller number of violations with 

respect to the chosen water quality standard. A plot of watershed health at stations where 

Orthophosphate is monitored versus drainage areas under agricultural and forest land use are 

shown in Figure 6 (third column). Mann-Kendall trend test was performed to ascertain the nature 

of relationship between watershed health and areas under agriculture and forest land use classes. 

a) b) 

c) d) 

MRB 

UMRB 

ORB 
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In the case of agriculture land use, the trend was negative (not statistically significant) indicating 

that watershed health measure for Orthophosphate decreases with increase in area under 

agricultural land use. On the other hand, the trend was positive and statistically significant when 

comparing watershed health measure and area under forest land use, indicating that watershed 

health measure typically improves when area under forest land use increases.  

 

Figure A11: Spatial distribution of a) reliability, b) resilience, c) vulnerability, and d) Watershed 

Health measures for Orthophosphate (parameter code: 00671). 

a) b) 

c) d) 

UMRB 

MRB 

ORB 
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Figure A12: Zoomed map of spatial distribution of a) reliability, b) resilience, c) vulnerability, and 

d) Watershed Health measures over MRB with respect to Suspended Sediment Concentration 

(parameter code: 80154). 

Table A1: Results of Kolmogorov-Smirnov one-tailed test to investigate if watershed health index 

of higher-order streams is statistically higher than lower-order streams at 5% significance level 

(𝛼). 

River Basin p-values 

SSC Nitrogen Orthophosphate 

UMRB 0.534 0.432 0.062 

ORB 0.627 0.840 0.866 

MRB 0.880 NA* NA* 

 

Table A2: Results of Kolmogorov-Smirnov one-tailed test to investigate if percentage area under 

agricultural land use for stations located along lower-order streams is statistically higher than 

stations located along higher-order streams at 5% significance level (𝛼). 

a) b) 

c) d) 
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River Basin p-values 

SSC Nitrogen Orthophosphate 

UMRB 0.098 0.091 0.062 

ORB 0.220 0.387 0.273 

MRB 1.000 NA* NA* 

 

Table A3: Results of Kolmogorov-Smirnov one-tailed test to investigate if percentage area under 

forest land use for stations located along higher-order streams is statistically higher than stations 

located along lower-order streams at 5% significance level (𝛼). 

River Basin p-values 

SSC Nitrogen Orthophosphate 

UMRB 0.030 0.029 0.023 

ORB 0.104 0.290 0.099 

MRB 0.241 NA* NA* 

 

*In Tables A1-A3, NA denotes KS test was not carried out because data for lower-order streams 

were not available at MRB. 
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